Return to search

A Numerical Study of High Temperature and High Velocity Gaseous Hydrogen Flow in a Cooling Channel of a NTR Core

Two mathematical models (a one and a three-dimensional) were adopted to study, numerically, the thermal hydrodynamic behavior of flow inside a single cooling channel of a Nuclear Thermal Rocket (NTR) engine. The first model assumes the flow in the cooling channel to be one-dimensional, unsteady, compressible, turbulent, and subsonic. The working fluid (GH2) is assumed to be compressible. The governing equations of the 1-D model are discretized using a second order accurate finite difference scheme. Also, a commercial CFD code is used to study the same problem. Numerical experiments, using both codes, simulated the flow and heat transfer in a cooling channel of the reactor. The steady state predictions of both models were compared to the existing experimental results and it is concluded that both models successfully predict the steady state fluid temperature distribution in the NTR cooling channel.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2828
Date20 December 2013
CreatorsSingh, Sajan B
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0019 seconds