Return to search

Effect of Aquaponic vs. Hydroponic Nutrient Solution, Led Light Intensity and Photoperiod on Indoor Plant Growth of Butterhead, Romaine and Kale (<i>L. Sativa, B. oleracea</i>)

Vertical farming has been proposed as a solution for providing food security for an increasing, urbanized human population. Light-emitting diode (LED) technology has become increasingly affordable and efficient, making it an ideal choice as artificial lighting for indoor farms. Still largely undiscovered parameters are the optimal plant varieties and types of production systems for plant growth, profit, and human nutrition. Aquaponics may be able to provide sustainable animal protein for vertical farms, increasing their ability to provide more substantial nutrition to consumers. This research aimed to better understand vertical farming as a food production system, and to determine if aquaponics can be an appropriate and applicable fit for it. The experiment was a randomized, factorial design with three independent variables: (1) LED photoperiod interval (2) LED-plant distance, and (3) nutrient solution, as well as several dependent variables to assess both plant yield and quality. A 4-tiered shelving unit was constructed for nutrient film technique (NFT) plant production, and treatments were assigned to each row: (1) LED experiment: Row A, 12/12hr reduced photoperiod with adjustable LEDs 4in. above plant surface; Row B, 2/1hr altered photoperiod interval relative to the control; Row C (control), 16/8hr “standard” photoperiod. (2) Nutrient experiment: Row C, aquaponic nutrient solution; Row H, hydroponic nutrient solution. Rows C and H had matched photoperiod and light intensity. Kale from Row A had significantly lower fresh and dry plant yield relative to the control, Row C (p<0.05). Hydroponic romaine, Row H, had significantly higher plant yield relative to aquaponics, Row C (p<0.05). Butterhead yields were not significantly different in any treatments (p>0.05). Future research may implement a larger sample size of only one plant variety, harvest plants earlier, limit light intensity variation, effectively “balance” the aquaponics system, and have more measures of plant “quality.”

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3313
Date01 June 2018
CreatorsFoster, Sean M
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0021 seconds