The large amount of available data on a diverse range of human activities provides many opportunities for understanding, improving and revealing unknown patterns in them. Powerful automatic methods for extracting this knowledge from data are already available from machine learning and data mining. They, however, rely on the expertise of analysts to improve their results when those are not satisfactory. In this context, interactive multidimensional projections are a useful tool for the analysis of multidimensional data by revealing their underlying structure while allowing the user to manipulate the results to provide further insight into this structure. This manipulation, however, has received little attention regarding their influence on the mappings, as they can change the final layout in unpredictable ways. This is the main motivation for this research: understanding the effects caused by changes in these mappings. We approach this problem from two perspectives. First, the user perspective, we designed and developed visualizations that help reduce the trial and error in this process by providing the right piece of information for performing manipulations. Furthermore, these visualizations help explain the changes in the map caused by such manipulations. Second, we defined the effectiveness of manipulation in quantitative terms, then developed an experimental framework for assessing manipulations in multidimensional projections under this view. This framework is based on improving mappings using known evaluation measures for these techniques. Using the improvement of measures as different types of manipulations, we perform a series of experiments on five datasets, five measures, and four techniques. Our experimental results show that there are possible types of manipulations that can happen effectively, with some techniques being more susceptible to manipulations than others. / O grande volume de dados disponíveis em uma diversa gama de atividades humanas cria várias oportunidades para entendermos, melhorarmos e revelarmos padrões previamente desconhecidos em tais atividades. Métodos automáticos para extrair esses conhecimentos a partir de dados já existem em áreas como aprendizado de máquina e mineração de dados. Entretanto, eles dependem da perícia do analista para obter melhores resultados quando estes não são satisfatórios. Neste contexto, técnicas de projeção multidimensional interativas são uma ferramenta útil para a análise de dados multidimensionais, revelando sua estrutura subjacente ao mesmo tempo que permite ao analista manipular os resultados interativamente, estendendo o processo de exploração. Essa interação, entretanto, não foi estudada com profundidade com respeito à sua real influência nos mapeamentos, já que podem causar mudanças não esperadas no mapeamento final. Essa é a principal motivação desta pesquisa: entender os efeitos causados pelas mudanças em tais mapeamentos. Abordamos o problema de duas perspectivas. Primeiro, da perspectiva do usuário, desenvolvemos visualizações que ajudam a diminuir tentativas e erros neste processo provendo a informação necessária a cada passo da interação. Além disso, essas visualizações ajudam a explicar as mudanças causadas no mapeamento pela manipulação. A segunda perspectiva é a efetividade da manipulação. Definimos de forma quantitativa a efetividade da manipulação, e então desenvolvemos um arcabouço para avaliar manipulações sob a visão da efetividade. Este arcabouço é baseado em melhorias nos mapeamentos usando medidas de avaliação conhecidas para tais técnicas. Usando tais melhorias como diferentes formas de manipulação, realizamos uma série de experimentos em cinco bases de dados, cinco medidas e quatro técnicas. Nossos resultados experimentais nos dão evidências que existem certos tipos de manipulação que podem acontecer efetivamente, com algumas técnicas sendo mais suscetíveis a manipulações do que outras.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-16012017-095849 |
Date | 14 October 2016 |
Creators | Fadel, Samuel Gomes |
Contributors | Paulovich, Fernando Vieira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds