The vagina is the port of entry for sexually transmitted diseases in women. Its epithelium constitutes the luminal border, thus comprising an important defence barrier. The objective of this work was to investigate the mechanisms of importance in the immune defence of the vaginal epithelium of healthy, fertile women, and possible menstrual cycle changes. Effects of hormonal contraceptive usage on oestrogen receptor (ER) and progesterone receptor (PR) expression were studied. The contribution of epithelial cell to the immune defence was estimated by assaying their expression of antimicrobial defensins and the epithelial thickness. Vaginal biopsies and serum samples were collected during the follicular and luteal phases in regularly menstruating women (controls) and in users of combined oral contraceptives (COCs), levonorgestrel implants (LNGs), or depot-medroxyprogesterone acetate injections (DMPAs). Fifteen healthy women (aged 20–34 years) were enrolled in each group. Morphometry was performed on vaginal tissue stained with haematoxylin/eosin and by immunohistochemistry using monoclonal antibodies against immune cell markers, PR, and ER. Expression of mRNA for human α-defensins HD-5 and HD-6, and human β-defensins (HBD) 1 to 4 were determined by real-time qRT-PCR and in situ hybridization. In controls, the epithelium was 261 ± 16 μm thick and harboured 241 ± 35 leukocytes (CD45+) per mm2. T lymphocytes (CD3+) dominated. Both αβ T cells and γδ T cells were present with an approximate 4-fold dominance of αβ T cells. Cytotoxic T cells (CD8+) were more frequent than T helper cells (CD4:CD8 ratio: 0.7 ± 0.1). Macrophages (CD68+) constituted the second-largest population, followed by Langerhans cells (CD1a+). B cells, natural killer cells, monocytes and granulocytes were generally absent. No differences were found between the follicular and luteal phase. All four β-defensins analysed for were detected in vaginal epithelium and most samples expressed at least two. HBD-2 and HBD-3 were most frequent. HBD-3 and HBD-4 expressing cells were localized in the parabasal and intermediate cell layers. α-defensins were not detected. The epithelium was significantly thicker (333 ± 9 μm) in COC, LNG, and DMPA users than in controls, and commonly showed hyperplasia. In DMPA and LNG users the frequency of intraepithelial leukocytes (CD45+) was increased, explained by increased frequencies of both αβ and γδ T cells. In DMPA users there was also a selective increase in CD8+ T cells. PR expression was significantly reduced in DMPA users compared with controls, COC and LNG users. COC and particularly DMPA users often had undetectable levels of serum E2. In conclusion, both adaptive immunity, i.e. intraepithelial T cells, and innate defence mechanisms, i.e. intraepithelial macrophages and β-defensins, are believed to contribute to the immune defence in the human female lower genital tract. These parameters did not change during the menstrual cycle but hormonal contraceptive usage, especially DMPA, affected the quality of the epithelium. The use of DMPA and LNG was correlated with the accumulation of T cells within the epithelium. The effects of these changes on the risk of contracting infections are yet to be determined.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-595 |
Date | January 2005 |
Creators | Ildgruben, Anna |
Publisher | Umeå universitet, Immunologi/immunkemi, Umeå universitet, Obstetrik och gynekologi, Umeå : Klinisk mikrobiologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 977 |
Page generated in 0.0017 seconds