L'identification des systèmes dynamiques complexes reste une préoccupation lorsque les erreurs de prédictions contiennent des outliers d'innovation. Ils ont pour effet de détériorer le modèle estimé, si le critère d'estimation est mal choisi et mal adapté. Cela a pour conséquences de contaminer la distribution de ces erreurs, laquelle présente des queues épaisses et s'écarte de la distribution normale. Pour résoudre ce problème, il existe une classe d'estimateurs, dits robustes, moins sensibles aux outliers, qui traitent d'une manière plus " douce " la transition entre résidus de niveaux très différents. Les M-estimateurs de Huber font partie de cette classe. Ils sont associés à un mélange des normes L2 et L1, liés à un modèle de distribution gaussienne perturbée, dit gross error model. A partir de ce cadre formel, nous proposons dans cette thèse, un ensemble d'outils d'estimation et de validation de modèles paramétriques linéaires et pseudo-linéaires boîte-noires, avec extension de l'intervalle de bruit dans les petites valeurs de la constante d'accord de la norme de Huber. Nous présentons ainsi les propriétés de convergence du critère d'estimation et de l'estimateur robuste. Nous montrons que l'extension de l'intervalle de bruit réduit la sensibilité du biais de l'estimateur et améliore la robustesse aux points de levage. Pour un type de modèle pseudo-linéaire, il est présenté un nouveau contexte dit L-FTE, avec une nouvelle méthode de détermination de L, dans le but d'établir les linéarisations du gradient et du Hessien du critère d'estimation, ainsi que de la matrice de covariance asymptotique de l'estimateur. De ces relations, une version robuste du critère de validation FPE est établie et nous proposons un nouvel outil d'aide au choix de modèle estimé. Des expérimentations sur des processus simulés et réels sont présentées et analysées.L'identification des systèmes dynamiques complexes reste une préoccupation lorsque les erreurs de prédictions contiennent des outliers d'innovation. Ils ont pour effet de détériorer le modèle estimé, si le critère d'estimation est mal choisi et mal adapté. Cela a pour conséquences de contaminer la distribution de ces erreurs, laquelle présente des queues épaisses et s'écarte de la distribution normale. Pour résoudre ce problème, il existe une classe d'estimateurs, dits robustes, moins sensibles aux outliers, qui traitent d'une manière plus " douce " la transition entre résidus de niveaux très différents. Les M-estimateurs de Huber font partie de cette classe. Ils sont associés à un mélange des normes L2 et L1, liés à un modèle de distribution gaussienne perturbée, dit gross error model. A partir de ce cadre formel, nous proposons dans cette thèse, un ensemble d'outils d'estimation et de validation de modèles paramétriques linéaires et pseudo-linéaires boîte-noires, avec extension de l'intervalle de bruit dans les petites valeurs de la constante d'accord de la norme de Huber. Nous présentons ainsi les propriétés de convergence du critère d'estimation et de l'estimateur robuste. Nous montrons que l'extension de l'intervalle de bruit réduit la sensibilité du biais de l'estimateur et améliore la robustesse aux points de levage. Pour un type de modèle pseudo-linéaire, il est présenté un nouveau contexte dit L-FTE, avec une nouvelle méthode de détermination de L, dans le but d'établir les linéarisations du gradient et du Hessien du critère d'estimation, ainsi que de la matrice de covariance asymptotique de l'estimateur. De ces relations, une version robuste du critère de validation FPE est établie et nous proposons un nouvel outil d'aide au choix de modèle estimé. Des expérimentations sur des processus simulés et réels sont présentées et analysées.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00832168 |
Date | 29 November 2012 |
Creators | Corbier, Christophe |
Publisher | Ecole nationale supérieure d'arts et métiers - ENSAM |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0026 seconds