Modifications to the GCMS assay for valproic acid and 12 metabolites were attempted with respect to internal standards and derivatizing reagents. Four new internal standards, octanoic acid and 2-methylglutaric acid for analysis of VPA and metabolites and hexanoic acid and di-ռ-butylacetic acid for the analysis of hexadeuterated VPA and metabolites were used.
Two new derivatizing reagents, MSTFA and MTBSTFA, were tested as alternatives to the reagent previously used. TMS (MSTFA) and tBDMS derivatives were compared with respect to sensitivity, stability, and chromatographic time. The derivatives formed from MTBSTFA were extremely stable a major drawback was the formation of a diderivative of 3-keto VPA upon increased heating time and storage.
Preliminary data on the metabolism of D₆-VPA was obtained in one volunteer. The substitution of six deuterium atoms for six hydrogen atoms resulted in an isotope effect with decreased serum trough concentrations of 4-ene VPA and 2,4-diene VPA.
Valproic acid and carbamazepine are frequently coadministered in efforts to optimize seizure control. VPA is extensively metabolized while CBZ is known to induce the hepatic microsomal enzyme system, and thus, this is a potentially toxic interaction. Pharmacokinetic parameters for VPA were obtained before and after CBZ administration in five, healthy male volunteers. Increased plasma clearance of VPA accompanied by decreased plasma concentrations, serum half-life, and AUC values were observed after CBZ comedication. This was consistent with the ability of CBZ to induce the hepatic microsomal enzyme systems in a manner similar to phenobarbital.
Serum trough and steady state concentrations and AUC values for 12 metabolites were determined before and after CBZ administration. The AUC values for the monounsaturated
metabolites decreased after CBZ administration while the AUC values of the polar metabolites increased. The amount of 4-ene VPA, a potential hepatotoxin, was not increased in the serum after administration of CBZ. The amounts of the two diunsaturated metabolites, 2,3'-diene VPA and 2,4-diene VPA, were increased in the serum of the volunteers after CBZ administration. The amount of 2-ene trans VPA in the serum was significantly decreased after CBZ administration, while the amount of 3-keto VPA did not increase.
Urinary metabolic profiles were determined individually and grouped in pathways for the five volunteers before and after CBZ administration. Increased recoveries of 4-ene VPA, 4-keto VPA, and 2-PSA after CBZ administration were consistent with enhanced ω-1 oxidation.
Formation clearance, metabolic clearance, and fraction metabolized were determined for the metabolic pathways and for the individual metabolites. CBZ adminstration resulted in increased formation clearances for all pathways. The results obtained from this study indicate that CBZ caused a general induction of VPA metabolism and did not specifically affect a particular pathway. The effect of CBZ on the beta-oxidation pathway is not clearly understood. CBZ may cause a metabolic shift away from beta-oxidation, or actually inhibit beta-oxidation to some extent. As well, peroxisomal beta-oxidation may be involved. / Pharmaceutical Sciences, Faculty of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/26511 |
Date | January 1987 |
Creators | Panesar, Sukhbinder Kaur |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.001 seconds