Return to search

IMPLEMENTATION OF NOVEL RECEPTOR-TRANSDUCTION CONCEPTS AND MATERIAL MORPHOLOGIES IN GAS SENSORICS

Low dimensional nanostructures have defined the frontier of the research in material science for the last two decades. Presented here are the results of experimental research on growth, device fabrication and application of quasi-one dimensional phthalocyanines and metal oxides to gas-sensing. The possibility of rational tuning of the growth conditions, in order to control composition, morphology, size, orientation and alignment of the grown low-dimensional nanostructures was investigated. Employing custom designed heating stages coupled with optical microscope the in situ approach of monitoring the growth of nanostructures has been realized. Using this method, the growth of VO2 nanowires and nanoplatelets have been investigated and two novel growth mechanisms were discovered and explained. A variety of phthalocyanine and metal-oxide nanowire-based chemical sensors have been proposed, fabricated and tested. The focus of our research was on the development of new sensing principles and the improvement of existing ones. In particular, nanowires of tin and titanium dioxide were proposed to be used as self-heated chemiresistors capable of operating in the absence of an external heater, thus paving the way for ultra-low power consumption sensors. For the first time VO2 nanowires were used to create a nano-Pirani gauge and a gas sensor employing a sharp temperature-driven metal-insulator transition in this material. The sensor is sensitive to both chemically active and inert gases. Its performance is modeled and optimization parameters are presented.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-1409
Date01 August 2011
CreatorsStrelcov, Evgheni
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0018 seconds