Return to search

Comparative Analysis of Adsorptive Media Treatment for Arsenic at SRP Groundwater Wells

abstract: Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb. With the Arizona Department of Water Resources considering reliance on other sources of water other than just solely surface water, groundwater proves a reliable, supplemental source. The Salt River Project (SRP) wants to effectively treat their noncompliance groundwater sources to meet EPA compliance. Rapid small-scale column tests (RSSCTs) of two SRP controlled groundwater wells along the Eastern Canal and Consolidated Canal were designed to assist SRP in selection and future design of full-scale packed bed adsorbent media. Main concerns for column choice is effectiveness, design space at groundwater wells, and simplicity. Two adsorbent media types were tested for effective treatment of As to below the MCL: a synthetic iron oxide, Bayoxide E33, and a strong base anion exchange resin, SBG-1. Both media have high affinity toward As and prove effective at treating As from these groundwater sources. Bayoxide E33 RSSCT performance indicated that As treatment lasted to near 60,000 bed volumes (BV) in both water sources and still showed As adsorption extending past this operation ranging from several months to a year. SBG-1 RSSCT performance indicated As, treatment lasted to 500 BV, with the added benefit of being regenerated. At 5%, 13%, and 25% brine regeneration concentrations, regeneration showed that 5% brine is effective, yet would complicate overall design and footprint. Bayoxide E33 was selected as the best adsorbent media for SRP use in full-scale columns at groundwater wells due to its simplistic design and high efficiency. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2015

Identiferoai:union.ndltd.org:asu.edu/item:36431
Date January 2015
ContributorsLesan, Dylan Scott (Author), Westerhoff, Paul (Advisor), Hristovski, Kiril (Committee member), Fraser, Matthew (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format75 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.1889 seconds