Return to search

Variant selection and its effect on texture inTi-6Al-4V

Titanium alloys are strong candidates for the aerospace industry and biomaterial applications because of their low density, high strength-to-weight ratio and very high strength even at temperatures up to 600°C. Like many other engineering alloys, titanium alloys are prone to strong preferred crystallographic orientation development during thermomechanical processing. Part of the titanium processing route is to heat treat the material above the β transus for the purpose of homogenization and associated phase transformation. This heat treatment dramatically affected the microstructure and texture evolution. Theoretically, such heat treatment should result in a nearly random texture if all variants during α→β→α phase transformation are active. In reality, significant textures are observed after such a heat treatment process. The present project aims at developing a detailed understanding of the root cause for this relatively strong texture by means of EBSD and in-situ neutron diffraction studies. The effect of β grain growth on variant selection during β to α phase transformation has been investigated by using two variants of Ti-6Al-4V with and without 0.4 wt% yttrium addition. The aim of adding yttrium was to control β grain growth above the β transus by pinning grain boundaries with yttria. Both materials were first thermomechanically processed to generate a similar starting microstructures and crystallographic textures. Subsequently, both materials were solution heat treated above the β transus followed by slow cooling to promote growth of the α lath structure from grain boundary α. Detailed EBSD and in situ neutron diffraction analysis were carried out to study microstructure and texture evolution. The variant selection calculation suggests that more variant selection occurred in convectional material with a large grain size compared to material with yttrium addition. In situ measurements showed that β texture strengthened significantly above the β transus with increasing β grain size. There was no significant variant selection during α→β transformation; variant selection noticeably increased during β→α transformation with increasing β grain size. Additional interrupted cooling experiments followed by EBSD analysis showed early nucleation of α variants with a 'butterfly morphology' from β grain boundaries that have a pair of β grain with a common <110> pole. These observations suggest reduced nucleation energies for α formation in such circumstances allowing extensive growth of these α variants into unoccupied β grains making it a dominant variant. The influence of rolling temperatures (i.e. at 800 ºC and 950 ºC) to produce different starting texture, on texture evolution and variant selection during α→β→α transformation was also investigated. Laboratory X-ray, EBSD and in-situ neutron diffraction texture analyses were carried out. Even though the transformation texture is stronger at 800 ºC, the degree of variant selection is stronger in materials rolled at950 ºC compared to material rolled at 800 ºC. Here, the enhanced variant selectionfor the material rolled at 950 ºC was related to the different β texture. It is suggested that the combination of a particular β texture components promote variant nucleation that can increase the likelihood of having β grain pairs with a common <110> pole.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:553527
Date January 2012
CreatorsObasi, Gideon Chima
ContributorsPreuss, Michael
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/variant-selection-and-its-effect-on-texture-inti6al4v(7e9255ab-62c2-42ee-91ce-fe3c0fa24bea).html

Page generated in 0.0022 seconds