Return to search

Express?o de genes relacionados ? absor??o e metabolismo de nitrog?nio em arroz sob alto e baixo suprimento de nitrato

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-09T12:24:30Z
No. of bitstreams: 1
2011 - Carlos Alberto Bucher.pdf: 775464 bytes, checksum: 84e941a946068132678bc3f55c09561d (MD5) / Made available in DSpace on 2016-08-09T12:24:30Z (GMT). No. of bitstreams: 1
2011 - Carlos Alberto Bucher.pdf: 775464 bytes, checksum: 84e941a946068132678bc3f55c09561d (MD5)
Previous issue date: 2011-02-23 / Funda??o Carlos Chagas Filho de Amparo ? Pesquisa do Estado do RJ - FAPERJ / Nitrogen is one of the nutrient elements most limiting for plant growth. Thus, increasing plant
nitrogen usage efficiency (NUE) is an essential factor for sustainable agriculture, leading to
an increased food production with less fertilizer input and less environment impact. NUE in
plant involves the uptake and accumulation efficiency, and N use efficiency for grain
production. Understanding the mechanisms regulating these processes is crucial for the
improvement of NUE in crops. Therefore, is essential to comprehend plants response to
different N regimes, mainly N limitation. The usage of plants or varieties with differences in
nutrient use efficiency is another important factor to determine the main mechanisms involved
in these processes. The objectives of this study were to evaluate N metabolism and expression
of genes involved in N uptake and assimilitation of two rice varieties (Piau? and IAC-47),
under different N supply conditions. The N metabolism was evaluated by quantification of
nitrogen fractions in plant tissue and enzymatic activity, expression of genes that code for
high and low affinity N transporters, and N assimilation enzymes. Two experiments were
conducted: the first, to investigate the plants behavior when grown under high and low N
supply; and the second to verify plants response to NO3
- resupply. The IAC-47 variety
showed greatest mass accumulation in all treatments. When plants were grown for a long
period under low N supply it was observed a higher nitrate (NO3
-) content in the tissue of
Piau? variety, which is adapted to low fertility conditions, as well as a high activity of nitrate
reductase and glutamine synthetase in the roots of these plants. When under high NO3
- supply
for a long period, Piau? variety had higher NO3
- concentrations in roots and sheaths, but no
differences were observed in enzymes activity. The nitrate transporters expression was higher
in roots of Piau? plants under low supply of NO3
- when compared to Piau? plants under high N
supply. Nitrate transporters expression in roots of IAC-47 plants showed a pattern opposite to
the one observed for Piau? plants. When plants were resupplied with NO3
-, after a 72 hours
period without N, there was a rapid increase, after 6 hours of resupply, in the expression of
high affinity nitrate transporters genes (OsNRT2.1) and the plastidial glutamine synthetase
(GS2) in the Piau? variety roots, and a higher expression of these in IAC-47 roots after a 24
hours of N resupply. The efficiency of Piau? variety is related to the differentiated control of
N absorption and assimilation mechanisms, which allow bigger expression of high affinity
nitrate transporters in tissue with high levels of soluble N, high N status, indicating that the
control of nitrogen uptake system may be essential for the nitrogen usage efficient. / O nitrog?nio ? um dos elementos minerais que mais limita o desenvolvimento das plantas.
Assim, aumentar a efici?ncia de uso de nitrog?nio (EUN) ? um fator ? essencial para uma
agricultura sustent?vel, levando a um aumento da produ??o de alimentos com menor uso de
insumos e menos impactos ao ambiente. A EUN envolve a efici?ncia de absor??o e ac?mulo e
a efici?ncia de utiliza??o de N para produ??o. Compreender os mecanismos envolvidos nesses
processos e como eles s?o controlados ? fundamental para a melhoria da EUN nas plantas
cultivadas. Para isso, ? essencial entender a resposta e comportamento das plantas a diferentes
regimes de N, principalmente ? limita??o de N. O uso de plantas ou variedades com
diferen?as na EUN ? outro fator importante para verificar os principais mecanismos
envolvidos. Este trabalho teve por objetivo desse trabalho foi verificar o metabolismo e a
express?o de genes envolvidos na absor??o e assimila??o de nitrog?nio nas variedades de
arroz Piau? e IAC-47 sob diferentes condi??es de disponibilidade desse nutriente. O
metabolismo de N foi avaliado atrav?s da quantifica??o das fra??es nitrogenadas no tecido e
atividade enzim?tica, a express?o de genes que codificam para transportadores de N de alta e
baixa afinidade e enzimas de assimila??o de N. Foram realizados dois experimentos: o
primeiro para verificar o comportamento das plantas quando cultivadas sob alto e baixo
suprimento de N; e o segundo, para verificar as repostas ao ressuprimento de N. O ac?mulo
de massa foi maior na variedade IAC-47 em todos os tratamentos. Quando as plantas foram
cultivadas por um longo per?odo sob baixo suprimento de N foi observado maior teor de
nitrato (NO3
-) no tecido da variedade Piau?, adaptada a condi??es de baixa fertilidade, assim
como uma alta atividade da nitrato redutase e glutamina sintetase nas ra?zes dessas plantas.
Sob alto suprimento de NO3
-, por um longo per?odo, a variedade Piau? apresentou maiores
teores de NO3
- nas bainhas e ra?zes, mas n?o foram observas diferen?as na atividade de
enzimas. A express?o dos transportadores de nitrato na variedade Piau? foi mais elevada nas
ra?zes das plantas sob baixo suprimento de NO3
- quando comparado as plantas sob alto
suprimento de N. Na variedade IAC-47 a express?o dos transportadores de NO3
- teve
comportamento oposto ao observado para a Piau?. Quando as plantas receberam NO3
-, ap?s
um per?odo de 72 horas sem N, houve um r?pido aumento, ap?s 6 horas do ressuprimento, na
express?o do gene que codifica para o transportador de NO3
- de alta afinidade OsNRT2.1 e
glutamina sintetase plastidial (GS2) nas ra?zes da variedade Piau?, e 24 horas ap?s o
ressuprimento a express?o foi maior na variedade IAC-47. A efici?ncia da variedade Piau?
esta relacionada ao controle diferenciado dos mecanismos de absor??o e assimila??o de N,
que permite a maior express?o dos transportadores de nitrato de alta afinidade em tecido com
altos teores de N sol?vel, alto status de N, indicando que o controle do sistema de absor??o de
N pode ser essencial para a efici?ncia no uso de nitrog?nio.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1163
Date23 February 2011
CreatorsBucher, Carlos Alberto
ContributorsFernandes, Manlio Silvestre, Sousa, Sonia Regina, Santos, Leandro Azevedo
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Agronomia e Ci?ncia do Solo, UFRRJ, Brasil, Instituto de Agronomia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
Relation6 REFER?NCIAS BLIBLIOGRAFICAS AN, D.; SU, J.; LIU, Q.; ZHU, Y.; TONG, Y.; LI, J.; JING, R.; LI, B.; LI, Z. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil, v.284, p.73?84, 2006. ARAKI, R. & HASEGAWA H. Expression of rice (Orysa sativa L.) genes involved in highaffinity nitrate transport during the period of nitrate induction. Breeding Science, v.56, p.295- 302, 2006. ARA?JO, E. S.; SOUZA, S. R.; FERNANDES, M. S. Caracter?sticas morfol?gicas e moleculares e ac?mulo de prote?na em gr?os de variedades de arroz do Maranh?o. Pesquisa Agropecu?ria Brasileira. v. 38, n. 11, p. 1281-1288, 2003. ASANO, T.; WAKAYAMA, M.; AOKI, N.; KOMATSU, S.; ICHIKAWA, H.; HIROCHIKA, H.; OHSUGI, R. Overexpression of a calcium-dependent protein kinase gene enhances growth of rice under low-nitrogen conditions. Plant Biotechnology. v. 27, p. 369- 373, 2010. ASHIKARI, M.; SAKAKIBARA,H.; LIN, S.; YAMAMOTO, T.; TAKASHI, T.; NISHIMURA, A.; ANGELES, E. R.; QIAN, Q.; KITANO, H.; MATSUOKA, M. Cytokinin oxidase regulates rice grain production. Science. v. 309, p.741-745, 2005. BALAZADEH, S.; RIANO-PACHO, D. M.; MUELLER-ROEBER, B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology. v. 10, p 63?75, 2008. BAPTISTA, A. de J.; FERNANDES, M. S.; SOUZA, R. de S. Cin?tica de absor??o de am?nio e crescimento radicular das cultivares de arroz Agulha e Bico Ganga. Pesquisa Agropecu?ria Brasileira, v.35, n.7, p.1325-1330, 2000. BAXTER, I.; TCHIEU, J.; SUSSMAN, M. R.; BOUTRY, M.; PALMGREN, M. G.; GRIBSKOV, M.; HARPER, J. F.; AXELSEN, K. B. Genomic comparison of P-type ATPase ion pump in Arabidopsis and rice. Plant Physiology, v.132, p.618-628, 2003. BENNETZEN, J. L.; MA, J. X. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Current Opinion in Plant Biology, v.6, n. 2, p. 128-133, 2003. BERNARD, S.M.; HABASH, D. Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist. v.182, p. 608?620. 2009. BEUVE, N.; RISPAIL, N.; LAINE, P.; CLIQUET. J.B.; OURRY, A.; LE DEUNFF, E. Putative role of gamma-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant. Cell and Environment. v. 27, p. 1035-1046, 2004. BI, Y.-M.; KANT, S.; CLARK, J.; GIDDA, S.; MING, F.; XU, J.; ROCHON, A.; SHELP, B.J.; HAO, L.; ZHAO, R.; MULLEN, R.T.; ZHU, T.; ROTHSTEIN, S.J. Increased nitrogenuse efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ., v. 32, n.12, p. 1749-1760, 2009. BOBIK, K.; DUBY, G.; NIZET, Y.; VANDERMEEREN, C.; STIERNET, P.; KANCZEWSKA, J.; BOUTRY, M. Two widely expressed plasma membrane H+-ATPase 66 isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. Plant Journal. v. 62, n. 2, p.291-301, 2010. BOUWMAN, A.F., BOUMANS, L.J.M., BATJES, N.H. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles, v. 16, n .4, p. 1058-1071, 2002. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248-254, 1976. BRAUER, E. K; ROCHONA, R.; BI, Y. M,; BOZZOA, G. G.; ROTHSTEIN, S. J.; SHELPA, B. J. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase. Physiologia Plantarum, v. 141, n. 4, p. 361-372, 2011. BUCHANAN, R. B., GRUISSEM, W. & JONES, R. L. Biochemistry and Molecular Biology of Plants. 4. ed. Rockville, Maryland. 2000. 1367p. BUCHER, C. A.; FERNANDES, M. S.; SOUZA, S. R. Effects of fusicoccin and vanadate on proton extrusion and potassium uptake by rice. Journal of Plant Nutrition, v. 29, p. 485-496, 2006. BUCHER, C. A. Avalia??o atrav?s de RT-PCR da express?o dos genes que codificam para enzimas de assimila??o de nitrog?nio em variedades de arroz. 2007. 37f. Disserta??o (Mestrado em Agronomia, Ci?ncia do Solo). Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2007. BURNS, M. J.; NIXON, G. J.; FOY, C.A.; HARRIS, N. Standardisation of data from realtime quantitative PCR methods ?evaluation of outliers and comparison of calibration curves. BMC Biotechnology, v. 5, 2005. Disponivel em: <http://www.biomedcentral.com/1472- 6750/5/31> site on-line, n.p. Acesso em nov. 2008. BUSTIN, SA, NOLAN, T. Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. Journal of Biomolecular Techniques, v15, p155-166. 2004. CAI, C.; WANG, J-Y.; ZHU, Y.; SHEN, Q.; LI,B.; TONG, Y.; LI, Z. Gene structure and expression of the high affinity nitrate transport system in rice roots. Journal of Integrative Plant Biology. v. 50, n. 4, p. 443-451, 2008. CAKMAK, I.; HENGELER, C.; MARSCHNER, H. Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany, v. 45, p. 1251?1257, 1994. CATALDO, D.; HARRON, M.; SCHARADER, L. E. & YOUNGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysis, v.6, p.853-855, 1975. CAVICCHIOLI, R., CHIANG, R.C., KALMAN, L.V.; GUNSALUS, R.P. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitratedependent signal transduction and gene regulation. Mol. Microbiol. v.21, 901?911. 1996. CEREZO, M.; TILLARD, P.; FILLEUR, S.; MUNOS, S.; DANIEL-VEDELE, F.; GOJON, A. Major alterations of the regulation of root NO3 - uptake are associated with mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiology, v.127, p.262-271, 2001. CHO, Y.; JIANG, W.; CHIN, J. W.; PIAO, Z.; CHO, G.; MCCOUCH, S. R.; KOH, H. Z. Identification of QTLs associated with physiological nitrogen use efficiency in rice. Mol. Cells, v. 23, n. 1, p. 72-79, 2007. 67 CHOU, C.C., CHEN C.H, LEE, T.T, PECK, K. Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res, v.32, n.12, e99. 2004. n.p. Dispon?vel em <http://nar.oxfordjournals.org/content/32/12/e99.full.pdf+html>. Acesso em out. 2009. CLARKSON, D.T., HOPPER, M.J., JONES, L.H.P. The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne: I. Solutions containing both ammonium ion and nitrate ion. Plant Cell Environ. v. 9, p. 535-546, 1986. COOKSON, S.J.; WILLIAMS, L.E.; MILLER, A.J. Light?dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. Plant Physiology. v.138, p. 1097?1105, 2005. CRAWFORD, N. M. & GLASS, A. D. M. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, v.3, n.10, p.389-395, 1998. CRAWFORD, N. M. Nitrate: Nutrient and signal for plant growth. The Plant Cell, v. 7, p. 859-868, 1995. CRUZ, F.; KALAOUN, S.; NOBILE, P.; COLOMBO, C.; ALMEIDA, J.; BARROS, L. M. G. ; ROMANO, E.; GROSSI-DE-S?, M. F.; VASLIN, M.; ALVES-FERREIRA, M. Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, v. 23, p. 607-616, 2009. CZECHOWSKI, T., BARI, R.P., STITT, M., SCHEIBLE, W.R., AND UDVARDI, M.K. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: Unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. v. 38, p. 366?379. 2004. CZECHOWSKI, T; STITT, M.; ALTMANN, T.; UDVARDI, M. K.; SCHEIBLE, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology. v. 139, p. 5-17, 2005. DAVIES, D.B., SYLVESTER-BRADLEY, R., The contribution of fertiliser nitrogen to leachable nitrogen in the UK: a review. J. Sci. Food Agric. v. 68, p. 399?406, 1995. DE ANGELI, A.; MONACHELLO, D.; EPHRITIKHINE, G.; FRACHISSE, J.M.; THOMINE, S.; GAMBALE, F.; BARBIER-BRYGOO, H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature, v. 442, n.24. p. 939-942. 2006. DE GROOT, C.C.; MARCELIS, L. F. M.; VAN DEN BOOGAARD, R.; KAISER, W. M.; LAMBERS, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant and Soil. v. 248, n.1-2, p. 257-268. 2003. DECHORGNAT, J.; NGUYEN, C-T.; ARMENGAUD, P.; JOSSIER, M.; DIATLOFF, E.; FILLEUR, S.; DANIEL-VEDELE, F. From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany. v. 62, p.1349?1359, 2011. DISTELFELD, A.; UAUY, C.; FAHIMA, T. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytologist. v. 169, n.4, p. 753-763, 2006. DOWNS, C. G.; CHRISTEY, M. C.; DAVIES, K.M.; KING, G.A.; SEELYE, J.F.; SINCLAIR, B.K.; STEVENSON, D, G. Hairy roots of Brassica napus: II. Glutamine synthetase overexpression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep, v. 14, p. 41?46, 1994. 68 DUBOIS, F.; TERC?-LAFORGUE, T.; GONZALES-MORO, M-B. ESTAVILLO, J-M.; SANGWAN, R.; GALLAIS, A.; HIREL, B. Glutamate dehydrogenase in plants: is there a new store for an old enzyme? Plant Physiology and Biochemistry, v.41, p.565-576, 2003. DUBY, G.; POREBA, W.; PIOTROWIAK, D.; BOBIK, K.; DERUA, R.,WAELKENS, E.; BOUTRY, M. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. Journal Biological Chemistry. v. 284, n. 7, p. 4213-4221, 2009. EULGEM, T. E SOMSSICH, I. E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. v. 10, p. 366-371, 2007. FANG, Y.; YOU, J.; XIE, K.; XIE, W.; XIONG, L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics. v. 280, p.547-56, 2008. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzime envolved in metabolism related to nitrogen. In: BERGSEN, F. J. ed. Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, 1980. p. 265-314. FEHLBAUM, P.; GUIHAL. C.; BRACCO, L.; COCHET, O. A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res. v. 33, n. 5, e47, 2005. Dispon?vel em < http://nar.oxfordjournals.org/content/33/5/e47.full.pdf>, acesso em out. 2009. FEI, H.; CHAILLOU, S.; HIREL, B.; MAHON, J. D.; VESSEY, J. K. Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta. v. 216, p. 467-474, 2003. FELKER, P. Microdetermination of nitrogen in seed protein extracts with the salicylatedichloroisocyanurate color reaction. Anal. Chem., v. 49, p. 1080-1080, 1977. FENG, H.; YAN, M.; FAN, X.; LI, B.; SHEN, B., MILLER, A. J.; XU, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, v.67, n. 7, p. 2319-2332, 2011. FERNANDES, M. S. Effects of environmental stress on the relationship of free amino-n to fresh weight of rice plants. Journal of Plant Nutrition. v. 14, n. 11, p. 1151-1164, 1991. FERNANDES, M. S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba, v.34, p.9-18, 1984. FERRAZ, A.S.D.; SOUZA, S.R.; STARK, E.M.L.M.; FERNANDES, M.S. Nitrogen use efficiency for gram and protein production by rice genotypes. Pesquisa Agropecuaria Brasileira, v. 32, n. 4, p. 435-442, 1997. FILLEUR, S.; DORBE, M.-F.; CEREZO, M.; ORSEL, M.; GRANIER, F.; GOJON, A.; DANIEL-VEDELE, F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Letter, v.489, p.220-224, 2001. FORDE, B. G.; LEA, P. J. Glutamate in plants: metabolism, regulation, and signaling. Journal of Experimental Botany. v. 58, n. 9, p. 2339?2358, 2007. FRAISIER, V.; GOJON, A.; TILLARD, P.; DANIEL-VEDELE, F. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for posttranscriptional regulation by a reduced nitrogen source. Plant J., v. 23, p. 489-496, 2000. 69 FU, J.; SAMPALO, R.; GALLARDO, F.; C?NOVAS, F. M.; KIRBY, E. G. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell and Environment, v.26, n.3, p.411? 418, 2003. FUENTES, S.I.; ALLEN, D.J.; ORTIZ-LOPEZ. A.; HERN?NDEZ, G. Over?expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany., v. 52, n. 358, p. 1071-1081, 2001. GACHON, C. M. A.; CHARRIER, B. Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, v. 55, p. 1445-1454, 2004. GANSEL, X.; MUNOS, S.; TILLARD, P.; GOJON, A. Differential regulation of the NO3 - and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with longdistance and local controls by N status of the plant. The Plant Journal, v. 26, p. 143?155, 2001. GARRIDO, F. R. S.; GARRIDO, R. G.; BUCHER, C. A.; SOUZA, S. R. ; FERNANDES, M. S. Rice varieties tonoplast and plasma membrane H+ATPases differential activities in response to nitrate pulses. Journal of Biological Sciences, v.8, n1, p. 107-112, 2008. GIBSON, U.E.; HEID, C.A.; WILLIMAS, P.M. A novel method for real time quantitative RT-PCR. Genome Res., v.6, p. 995-1001, 1996. GIRIN, T.; EL-KAFAFI, E. S.; WIDIEZ, T.; ERBAN, A.; HUBBERTEN, H.M.; KOPKA, J, HOEFGEN, R, GOJON, A.; LEPETIT, M. Identification of Arabidopsis mutants impaired in the systemic regulation of root nitrate uptake by the nitrogen status of the plant. Plant Physiology, v. 153, p. 1250?1260, 2010. GIRIN, T.; LEJAY, L.; WIRTH, J.; WIDIEZ, T.; PALENCHAR, P.M., NAZOA, P., TOURAINE, B, GOJON, A., LEPETIT, M. Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant, Cell and Environment. v. 30, p. 1366?1380. 2007. GLASS, A. D. M. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, v.22, p.453?470, 2003. GLASS, A. D. M.; BRITTO, D. T.; KAISER, B. N.; KINGHORN, J. R.; KRONZUCKER, H. J.; KUMAR, A.; OKAMOTO, M.; RAWAT, S.; SIDDIQI, M. Y.; UNKLES, S. E.; VIDMAR, J. J. The regulation of nitrate and ammonium transport system in plants. Journal of Experimental Botany, v.53, p.855-864, 2002. GLASS, A. D.; SHAFF, J. E.; KOCHIAN, L. V. Studies of the uptake of nitrate in barley, IV. Electrophysiology. Plant Physiology. n. 99, p. 456?463, 1992. GOJON, A.; NACRY, P.; DAVIDIAN, J. C. Root uptake regulation: a central process for NPS homeostasis in plants. Current Opinion in Plant Biology. 12, 328?338, 2009. GOOD, A. G.; SHRAWAT, A. K.; MUENCH, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, v. 9 n. 12, p.598-605, 2004. GREENLAND, D. J. Nitrate fluctuations in tropical soils. Journal Agricultural Science. v. 50, p. 82?91, 1958. GREGERSEN, P. L.; HOLM, P. B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnology Journal. v.5, n.1, p. 192-206, 2007. 70 GUTIERREZ, L.; MAURIAT, M.; PELLOUX, J.; BELLINI, C.; WUYTSWINKEL. O. Towards a systematic validation of references in Real-Time RT-PCR. The Plant Cell, v. 20, p.1734?1735, 2008. HABASH, D. Z.; MASSIAH, A. J.; RONG, H. L.; WALLSGROVE, R. M.; LEIGH, R. A. The role of cytosolic glutamine synthetase in wheat. Annals of Applied Biology, v.138, n.1, p.83?89, 2001. HARADA, H.; KUROMORI, T.; HIRAYAMA, T.; SHINOZAKI, K.; LEIGH, R. A. Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. Journal of Experimental Botany. v.55, p. 2005-2014, 2004. HERMANS, C.; VERBRUGGEN, N. Physiological characterization of magnesium deficiency in Arabidopsis thaliana. Journal of Experimental Botany. v. 418, p. 2153-2161, 2005. HIRAI, M.Y.; YANO, M.; GOODENOWE, D.B.; KANAYA, S.; KIMURA, T. A.; WAZUHARA, M.; ARITA, M.; FUJIWARA, T., SAITO, K. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, v. 101, p. 10205-10210, 2004. HIREL, B.; BERTIN, P.; QUILLER?, I.; BOURDONCLE, W.; ATTAGNANT, C.; DELLAY, C.; GOUY, A.; CADIOU, S.; RETAILLIAU, C.; FALQUE, M. & GALLAIS, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology, v.125, p.1258-1270, 2001. HIREL, B.; GOUIS, J. L.; NEY, B.; GALLAIS, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, v.58, p.2339-2358, 2007. HIREL, B.; LEA, P. J. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. In: FOYER, C. H.; NOCTOR, G. (Org.). The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation, Netherlands, Kluwer Academic, 2002. p.71-92, HO, C.H.; LIN, S.H.; HU, H.C.; TSAY, Y.F. CHL1 functions as a nitrate sensor in plants. Cell . v. 138, p. 1184?1194, 2009. HOAGLAND, D. R. & ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Berkeley, California, 1950. 347p. HU, H.; DAI, M.; YAO, J. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences, v. 103, p. 12987?12992, 2006. HU, H.; WANG, Y.; TSAY, Y. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal. v. 57, p. 264?278, 2009. HU, Z. H.; LI, P.; ZHOU, M.Q.; ZHANG, Z.; WANG, L.; ZHU L.; ZHU, Y. Mapping of quantitative trait loci (QTLs) for rice protein and fat content using doubled haploid lines. Euphytica. v. 135, p. 47?54, 2004. 71 ISHIMARU, K.; KASHIWAGI, T.; HIROTSU, N.; MADOKA, Y. Identification and physiological analyses of a locus for rice yield potential across the genetic background. Journal of Experimental Botany. v.56, n.420, p 2745-2753, 2005. ISHIYAMA, K., HAYAKAWA, T. AND YAMAYA, T. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of nitrogen. Planta, v. 204, p. 288?294, 1998. ISHIYAMA, K.; INOUE, E.; TABUCHI, M.; YAMAYA, T.; TAKOSASHI, H. Biochemical backgrounds of compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol. v. 45, p. 1640-1647, 2004a. ISHIYAMA, K.; INOUE, E.; WATANABE-TAKOSASHI, A.; OBARA, M.; YAMAYA, T.; TAKOSASHI, H. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J. Biol. Chem. v. 279, p. 16598-16605, 2004b. IZAWA, T. & SHIMAMOTO, K. Becoming a model plant: the importance of rice to plant science. Trends in Plant Science, v.1, n.2, p.95-99, 1996. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Bioch. Bioph. Res. Comm. v. 345, p 646?651, 2006. JAWORSKI, E. G. Nitrate Reductase assay in intact plant tissues. Biochemical Byophysical Research Communications, v.43, n.6, p.1274-1279, 1971. JIANG, L.; DAI, T.; JIANG, D.; CAO, W.; GAN, X.; WEI, S. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research. v. 88, p. 239-250, 2004. KANNAN, S.; NIELSEN, S. S.; MASON, A. C. Protein digestibility-corrected amino acid scores for bean and bean-rice infant weaning food products. Journal of Agricultural and Food Chemistry. v. 49, n.10, p. 5070-5074, 2001. KANT, K.; BI, Y. M.; ROTHSTEIN, S. J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, v. 62, n. 4, p. 1499-1509, 2011. KIM, B. R.; NAM, H.Y.; KIM, S.U.; KIM, S.I.; CHANG, Y.J. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters. v. 25, p. 1869-1872, 2003. KIRK, G. J. D.; KRONZUCKER, H. J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: Modeling study. ANNALS OF BOTANY, v.96, p.639-646, 2005. KLEIN, D. Quantification using real-time PCR technology: applications and limitations. Trends in Molecular Medicine. V.8 n.6, p.257-260, 2002. KOTHAPALLIT R, YODER SJ, MANE S, LOUGHRAN TPJ: Microarray results: how accurate are they? BMC Bioinformatics. v. 3, n. 1, p. 22-32. 2002. KRAPP, A.; SALIBA-COLOMBANI, V.; DANIEL-VEDELE, F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics. Photosynthesis Research. v.83, p. 251?263, 2005. 72 KREBS, M.; BEYHL, D.; G?RLICHA, E.; AL-RASHEID, K. A. S.; MARTEN, I.; STIERHOFD, Y-D.; HEDRICH, R.; SCHUMACHERA, K. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. PNAS, v. 107, n. 7, p. 3251?3256, 2010. KROUK, G. TRANCHINA, D.; LEJAY, L.; CRUIKSHANK, A.A.; SHASHA, D.; CORUZZI, G. M.; GUTIERREZ, R.A. A systems approach uncovers restrictions for signal interactions regulating genome-wide responses to nutritional cues in Arabidopsis. PLoS Computional Biology. 5, e1000326, 2009. on line, n.p. Dispon?vel em <http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000326> acesso em: mai. 2009. KROUK, G.; CRAWFORD, N.M.; CORUZZI, G.M.; TSAY, Y.F. Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology. v.13, p. 1-8 2010. KROUK, G.; TILLARD, P.; GOJON, A. Regulation of the high-affinity NO3 - uptake system by NRT1.1-mediated NO3 - demand signaling in Arabidopsis. Plant Physiol., v. 142, p.1075- 1086, 2006. LANCIEN, M, MARTIN, M, HSIEH, M, H, LEUSTEK T, GOODMAN H, CORUZZI G M. Arabidopsis glt 1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilation pathway. Plant Journal. v. 29, p.347-358, 2002. LEA, P.J.; AZEVEDO, R. A. Nitrogen use efficiency. 2. Amino acid metabolism. Annals of Applied Biology. v. 151, p. 269?275. 2007. LEEGOOD, R.C.; LEA, P.J.; ADCOCK, M.D.; HAUSLER, R.E. The regulation and control of photorespiration. Journal of Experimental Botany. v.46, p. 1397?1414. 1995. LI, C.; SANG, T. Rice domestication by reducing shattering. Science. v. 311, n. 5769, p. 1936 ? 1939, 2006. LI, W.; WANG, Y.; OKAMOTO, M.; CRAWFORD, N. M.; SIDDIQI, M. Y.; GLASS, A. D. M. Dissection of the AtNRT2.1:AtNRT2.2 inducible high affinity nitrate transporter gene cluster. Plant Physiology, v.143, p.425?433, 2007. LIAN, X.; WANG, S.; ZHANG, J.; FENG, Q.; ZHANG, L.; FAN, D.; LI, X.; YUAN, D.; HAN, B.; ZHANG, Q. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Molecular Biology, v. 60, p.617-631, 2006. LIAN, X.; XING, Y.; XU, H.Y.C.; LI, X.; ZHANG, Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics. v.112, p.85?96, 2005. LIMAMI, A.; PHILLIPSON, B.; AMEZIANE, R;. PERNOLLET, N.; JIANG, Q.; ROY, R.; DELEENS, E.; CHAUMONT-BONNET, M.; GRESSHOFF, P. M.; HIREL, B. Does root glutamine synthetase control plant biomass production in Lotus japonicus L. Planta. v. 209, p. 495-502, 1999. LIN, C.; KOH, S.; STACEY, G.; YU, S.; LIN, T. & TSAY, Y. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiology, v.122, p.379-388, 2000. 73 LIN, H.; SALUS, S. S.; SCHUMAKER, K. S. Salt sensitivity and the activities of the H+- ATPases in cotton seedlings. Crop Science, v. 7, n. 1, p. 190-197, 1997. LINKOHR, B.I.; WILLIAMSON, L.C.; FITTER, A.H.; LEYSER, H.M.O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant Journal. v. 29, p. 751?760. 2002. LITTLE, D.Y.; RAO, H.; OLIVA, S.; DANIEL-VEDELE, F.; KRAPP, A.; MALAMY, J.E. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences, v. 102, p. 13693-13698, 2005. LIU, K.-H. & TSAY, Y.-F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. The EMBO Journal, v.22, p.1005?1013. 2003. LIU, K.-H.; HUANG, C-Y.; TSAYA, Y-F. CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell, v.11, p. 865-874, 1999. LIVAK, K.J.; CHMITTGEN, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- CT method. Methods. v. 25, p. 402?408. 2001. LORKOWSKI, S.; CULLEN, P. High-throughput analysis of mRNA expression: microarrays are not the whole story. Expert Opinion on Therapeutic Patents. v. 14, n.3, p. 377-403, 2004. LOTHIER, J.; GAUFICHON, L.; SORMANI, R.; LEMA?TRE, T.; AZZOPARDI, M.; MORIN, H.; CHARDON, F.; REISDORF-CREN, M.; AVICE, J. C.; MASCLAUXDAUBRESSE, C. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. Journal of Experimental Botany, v.62, n. 4, p. 1375-1390. 2011. MACDUFF, J. H. & JACKSON, S. B. Growth and preferences for ammonium or nitrate upatke by barley in relation to root temperature. Journal of Experimental Botany, v.42, n.237, p.521-530, 1991. MAE, T.; KAI, N.; MAKINO, A.; OHIRA, K. Relation between ribulose bisphosphate carboxylase content and chloroplast number in naturally senescing primary leaves of wheat. Plant Cell Physiol., v.25, p.333-336. 1984. MAH, N.; THELIN, A.; LU, T.; NIKOLAUS, S.; KUHBACHER, T.; GURBUZ, Y, EICKHOFF, H.; KLOPPEL, G.; LEHRACH, H.; MELLGARD, B.; COSTELLO, C.M.; SCHREIBER, S. A comparison of oligonucleotide and cDNA-based microarray systems. Physiol Genomics, v. 16, n. 3, p.361-370, 2004. MALAGOLI, P.; LAINE, P.; DEUNFF, E.; ROSSATO, L.; NEY, B.; OURRY, A. Modelling nitrogen uptake in oilseed rape cv. Capitol during a growth cycle using influx kinetics of root nitrate transport systems. Plant Physiology. v. 134, p. 388?400. 2004. MANFIELD, I.W.; DEVLIN, P. F.; JEN, C.; WESTHEAD, D.R.; GILMARTIN, P M. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the arabidopsis GATA gene family. Plant Physiology, v. 143, p. 941?958, 2007. MARSHALL, E. Getting the noise out of gene arrays. Science, v. 306, n. 5696, p. 630-631, 2004. 74 MARTIN, A.; LEE, J.; KICHEY, T.; GERENTES, D.; ZIVY, M.; TATOUT, C.; DUBOIS, F.; BALLIAU, T.; VALOT, B.; DAVANTURE, M.; TERC?-LAFORGUE, T.; QUILLER?, I.; COQUE, M.; GALLAIS, A.; GONZALEZ-MORO, M.-B.; BETHENCOURT, L.; HABASH, D. Z.; LEA, P. J.; CHARCOSSET, A.; PEREZ, P.; MURIGNEUX, A.; SAKAKIBARA, H.; EDWARDS, K. J.; HIREL, B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, v.18, p.3252?3274, 2006. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L, SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants, challenges for sustainable and productive agriculture. Annals of Botany, v. 105, p. 1141? 1157, 2010. MENDONCA, M. L. Estudos dos mecanismos de toler?ncia ao alum?nio e sua variabilidade genot?pica em arroz (Oryza Sativa, L.). 1991. 176f. Disserta??o (Mestrado em Agronomia - Ci?ncias do Solo). Universidade Federal Rural do Rio de Janeiro, Serop?dica. 1991. MICHAEL, T.P., MOCKLER, T.C., BRETON, G., MCENTEE, C., BYER, A., TROUT, J.D, HAZEN, S.P., SHEN, R., PRIEST, H.D., SULLIVAN, C, M. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genetics, v. 4: e14, 2008. Dispon?vel em <www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.0040014> , acesso em jun. 2008. MILLER, A. J. E SMITH, S. J. Nitrate transport and compartmentation in cereal root cells. Journal of Experimental Botany. v. 47, n. 300, p. 843-854. 1996. MILLER, A.J., FAN, X., SHEN, Q., AND SMITH, S.J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany . v. 59, p.111?119, 2008. MILLER, A.J., FAN, X.R., ORSEL, M., SMITH, S.J., WELLs D.M. Nitrate transport and signalling. Journal of Experimental Botany, v. 58, p. 2297-2306. 2007. MU?OS, S.; CAZETTES, C.; FIZAMES, C, GAYMARD, F, TILLARD, P, LEPETIT, M, LEJAY, L, GOJON, A. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell, v. 16, p. 2433-2447, 2004. NARDOTO, G.B.; BUSTAMANTE, M.C. Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecu?ria Brasileira, v.38, n.8, p.955-962, 2003. NAVARRO, F.J, MARTIN, Y., SIVERIO, J.M. Phosphorylation of the yeast nitrate transporter Ynt1 is essential for delivery to the plasma membrane during nitrogen limitation. J Biol Chem. v.283, n.3, p.1208-31217, 2008. NICOT, N.; HAUSMAN, J. H.; HOFFMANNL.; EVERS, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, v. 56, n. 421, p. 2907?2914, 2005. NORTH, K.A.; EHLTING, B., KOPRIVOVA, A., RENNENBERG, H., KOPRIVA, S. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. Journal of Experimental Botany. v. 47, p. 912?918, 2009. 75 NUNES-NESI, A.; FERNIE, A. R.; STITT, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant. v.3, n. 6, p. 973-996. 2010. OBARA, M.; KAJIURA, M.; FUKUTA, Y.; YANO, M.; HAYASHI, M., YAMAYA T, SATO, T. Mapping of QTLs associated with cytosolic glutamine synthetase and NADHglutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany, v. 52, p. 1209-1217, 2001. OKAMOTO, M.; KUMAR, A.; LI, W.; WANG, Y, SIDDIQI, M.Y, CRAWFORD, N.M, GLASS, A.D.M. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene. AtNRT3.1. Plant Physiology. v. 140, p. 1036?1046, 2006. OKAMOTO, M.; VIDMAR, J. J.; GLASS, A. D. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiology, v.44, p.304?317, 2003. OLIVEIRA, I. C.; BREARS, T.; KNIGHT, T. J.; CLARK, A.; CORUZZI, G. M. Overexpression of cytosolic Glutamine Synthetase: relation to nitrogen, light, and photorespiration. Plant Physiology, v.129, p.1?11, 2002. ORSEL, M.; CHOPIN, F.; LELEU, O.; SMITH, S. J.; KRAPP, A.; DANIEL-VEDELE, F.; MILLER, A. J. Characterization of a two component high affinity nitrate uptake system in Arabidopsis; physiology and protein?protein interaction. Plant Physiology, v.142, p.1304? 1317, 2006. ORSEL, M.; KRAPP, A.; DANIEL-VEDELE, F. Analysis of the NRT2 nitrate transporter family in Arabidopsis: structure and gene expression. Plant Physiology, v.129, p.886?896, 2002. ORTEGA, J.L, MOGUEL-ESPONDA, S., POTENZA, C, CONKLIN, C.F.; QUI

Page generated in 0.0058 seconds