Return to search

La barrière hémato-encéphalique et l'ischémie cérébrale : étude in vitro de la dysfonction et de la protection microvasculaire / The blood brain barrier and ischemia : in vitro study of microvascular protection and dysfunction

La barrière hémato-encéphalique (BHE) est une interface localisée au niveau des cellules endothéliales des capillaires cérébraux. Elle présente des caractéristiques physiques et métaboliques spécifiques restreignant les échanges entre le sang et le cerveau dans le but de maintenir l’homéostasie du système nerveux central. Dans des conditions pathologiques comme l’ischémie cérébrale, la perte de son intégrité provoque l’apparition d’un oedème vasogénique qui aggrave considérablement le pronostic vital des patients. Malheureusement, les mécanismes impliqués dans l’hyperperméabilité vasculaire demeurent inconnus, ce qui limite l’utilisation de la seule thérapie disponible à 5% des patients. Depuis qu’aucun agent pharmacologique n’a réussit à être neuroprotecteur, notre compréhension des rapports entre le sang et le cerveau est remise en cause. La complexité des interactions entre la BHE et les cellules nerveuses a mené au concept d’une unité fonctionnelle dite neurovasculaire. Ainsi de nouvelles stratégies de protection émergent à partir d’observations au niveau vasculaire. Ainsi la première partie de nos travaux a consisté à étudier l’effet vasculoprotecteur potentiel du fénofibrate, un hypolipémiant agoniste du récepteur nucléaire PPAR-a (Peroxisome Proliferator- Activated Receptor-alpha), dont le bénéfice est observé en clinique depuis quelques années et plus récemment dans une étude expérimentale menée chez la souris. Les mécanismes de cette protection aujourd’hui inconnus, pourraient impliquer la BHE réputée très peu perméable à ce fibrate. Un renforcement de la BHE limiterait la formation de l’oedème cérébral. Pour cela nous avons adapté un modèle in vitro syngénique murin de BHE aux études de perméabilité en condition d’OGD (oxygen and glucose deprivation) mimant les conséquences immédiates de l’occlusion, toute première étape de l’accident vasculaire cérébral (AVC) ischémique. Le modèle consiste en une co-culture de cellules endothéliales primaires de capillaires cérébraux et de cellules gliales primaires. Nos travaux démontrent qu’un traitement préventif au fénofibrate protège l’endothélium en limitant l’hyperperméabilité induite par l’OGD. Cette action protectrice cible exclusivement l’endothélium et dépend de l’activation de PPAR-a démontré par l’absence d’effet protecteur sur les cellules endothéliales dont le gène codant pour PPAR-a a été invalidé. La seconde partie de l’étude s’est intéressée aux dommages vasculaires de la reperfusion, étape plus tardive de l’ischémie cérébrale connue pour aggraver l’oedème vasogénique et mener à des hémorragies fatales. A l’aide de notre modèle in vitro, nous avons étudié l’effet de la réoxygénation sur la perméabilité vasculaire dans le but de se rapprocher des conditions ischémiques in vivo. Après une incubation en condition d’OGD, la co-culture est replacée dans un milieu réoxygéné pendant une période allant de 2h à 24h. La mesure de la perméabilité vasculaire a démontré un profil multiphasique de l’ouverture de la BHE dépendant de la présence des cellules gliales. L’analyse en microscopie électronique des cellules endothéliales a suggéré une modulation fine de la fonctionnalité des jonctions serrées endothéliales. De plus, l’étude en IRM de diffusion chez la souris in vivo a révélé des mouvements d’eau qui suggèrent une perturbation de l’homéostasie hydrique du parenchyme cérébral au voisinage de l’occlusion dans les étapes précoces mais aussi dans les étapes tardives. En conclusion, l’ensemble des travaux met en avant la possibilité d’une préservation pharmacologique de l’intégrité de la BHE au début de l’ischémie cérébrale. Celle-ci montre l’intérêt des approches in vitro utilisant un modèle cellulaire pertinent et caractérisé. La validation de la cible cellulaire et moléculaire du fénofibrate à l’aide de notre modèle ouvre une première voie d’exploration des mécanismes impliqués dans ce phénomène de protection microvasculaire précoce. Cependant, la dysfonction retardée de la BHE est également un élément à prendre en compte pour se rapprocher de la physiopathologie de l’ischémie in vivo et espérer à terme une amélioration de l’approche thérapeutique de cette pathologie. / The Blood brain barrier (BBB) is an interface localised at brain capillary endothelial cells. The BBB possesses both physical and metabolic restrictive properties aiming at the maintenance of the central nervous system homeostasis. But under pathological conditions like ischemic stroke, the loss of BBB integrity induces a cerebral vasogenic edema which considerably worsens the vital prognosis of patients. The mechanisms underlying this vascular hyperpermeability are currently unknown thus limiting the use of the only medical intervention available at only 5% of stroke patients. Since no pharmacological molecule succeeded in being neuroprotective, our understanding of the relationships between blood and brain is questioned. The complex interactions between the BBB and nervous cells have lead to the concept of a functional unit, termed the neurovascular unit. Thus, new strategies are recently emerging from observation of vascular events. Thus, the first aim of our study was to test the potential vasculoprotective action of fenofibrate, a hypolipemic drug known as an activator of the nuclear receptor PPAR-a a (Peroxisome Proliferator-Activated Receptor-alpha), as benefit against stroke was observed in clinics since a few years, and recently reported in an experimental study. Yet unknown mechanisms, the protective effect may be exerted on the BBB since reported as impermeable to this compound. An early tightening of the BBB would limit the extent of brain edema. Hence, we have adapted a mouse syngenic BBB in vitro cell model to permeability studies under the stress condition found at the early stage of ischemic stroke defined in vitro as oxygen and glucose deprivation (OGD). This stress simulates the early consequences of occlusion. This model consists of a co-culture of primary brain capillary endothelial cells together with primary glial cells. We have demonstrated that a preventive treatment with fenofibrate has a protective effect on the BBB by limiting the hyperpermeability induced by the OGD condition. This effect targets endothelial cells exclusively and depends on PPAR-a activation, as revealed by the absence of protective action of fenofibrate on PPAR-a deficient endothelial cells. The second part of the study has focused on vascular reperfusion injury, a later stage of ischemia known to worsen vasogenic oedema and to lead to fatal haemorrhage. Using our in vitro BBB model, we have studied the effect of reoxygenation on vascular permeability in order to closely simulate in vivo ischemic condition. Following incubation under OGD condition, the co-cultures were placed into an oxygenated culture medium from 2h to 24h. The BBB permeability demonstrated a multiphasic opening of the BBB which depended on glial cells presence. Electronic microscopy analysis of BBB endothelial cells suggested a fine modulation of tight junction functionality. Moreover, the MRI diffusion analysis in mice has revealed particular water movements suggesting an early disturbance in water homeostasis of brain parenchyma in the vicinity of occlusion. In conclusion, this work put forward the idea of a pharmacological BBB protection at the early stage of ischemic stroke. This demonstrates the relevance of in vitro approaches using a pertinent and well characterised cell model. The validation of cellular and molecular targets of fenofibrate opens a way of first exploration of mechanisms involved in this early microvascular protection phenomenon. But the late BBB dysfunction also needs to be taken into account for a complete fitting with in vivo stroke pathophysiology and an improvement of the therapeutic approaches to this pathology.

Identiferoai:union.ndltd.org:theses.fr/2009ARTO0403
Date04 December 2009
CreatorsMysiorek, Caroline
ContributorsArtois, Tilloy-Fenart, Laurence
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds