Long-term survival of cardiac transplant recipients continues to be severely limited by the development of a pathological, chronic rejection process, termed allograft vasculopathy (AV). This remains to be the case despite dramatic improvements in the areas of surgical techniques, pre- and post-operative care, and immunosuppression.
To model the clinical setting we used calcineurin inhibitor (CNI) immunosuppression, the cornerstone of post-transplant immunosuppression, in a murine aortic interposition transplant model for our analysis of AV development. This model mimics the presentation of AV in human cardiac transplants through the development of a progressively occlusive neointimal lesion. Our previous work in this model has demonstrated that CD8+, but not CD4+, T cells play a role in neointimal lesion formation. Further investigation also highlighted a specific requirement for either CD8+ T cell-derived IFN-γ or direct cytotoxicity in the development of lesion formation. In the current study we confirmed that CD8+ T cell-derived IFN-γ also leads to the loss of medial smooth muscle cells, an event which inversely correlates with lesion formation. The Fas/FasL direct cytotoxic pathway was also significantly involved in neointimal lesion formation and medial remodeling. This work clarified the pathways utilized by CD8+ T cells in their role as mediators of AV development.
Recognizing the threat that CD8+ T cells pose to cardiac transplant recipients in the presence of CNI immunosuppression, and a growing concern with the presence of anti-donor memory T cells in transplant recipients, we next explored the development of memory CD8+ T cells in the presence of CNI immunosuppression. We first established that memory CD8+ T cells could not develop when CNI immunosuppression was initiated immediately post-challenge. Next, we hypothesized that the clinical practice of CNI delay post-transplant would permit the development of de novo memory CD8+ T cells. Immediate and early initiation was sufficient to prevent the development of de novo memory CD8+ T cells. However, later delay to within a clinically practiced timeframe did permit the development of de novo memory CD8+ T cells. Our analysis revealed that this population demonstrated equivalent functionality to de novo memory CD8+ T cells generated in the absence of CNI immunosuppression.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/43957 |
Date | 15 January 2014 |
Creators | Hart-Matyas, Michael |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds