Nesta dissertação vamos estudar alguns importantes resultados acerca da resolubilidade local de operadores lineares de primeira ordem. Mais especificamente, seja o campo vetorial singular L em \'R POT. n\' e dado por: L = \'\\SIGMA SUP. m\' . INF. j=1\' a IND. j\' (x) \'SUP. \\PARTIAL\' INF. \\PARTIAL x INF. j\'. Esta trabalho dirige-se ao estudo da resolubilidade local de L, isto é, dada f \'PERTENCE A\' \' C POT. INFINITO\' (\'R POT. n\') e dado \'x IND. 0\' \'PERTENCE A\' \'R POT. n queremos encontrar u \'PERTENCE A\' D\'(\'R POT.n \') tal que Lu = f numa vizinhança de \'x INF. 0\'. Será dada atenção especial ao caso em que os coeficientes \'a IND. j\'(x) de L são função lineares. Também, serão apresentados resultados sobre a resolubilidade local da equação Lu = cu + f, sendo c \'PERTENCE A\' \'C POT. INFINITO\' (\'R POT. n\') / This dissertation aims to study some important results about local solvability of first order differential operators. Specifically, let L be a singular vector field on \'R POT. n\' given by L = \' \\SIGMA SUP. m INF.j=1\' \'a IND. j(x) \'\\PARTIAL SUP. INF. \\PARTIAL x INF. j\'. This work explore the local solvability of L, that is, given f \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\' and \'x INF. 0\' \'IT BELONGS\' \'R POT. n\' we want to find u \'IT BELONGS\' 2 D\'(\'R POT. n) such that Lu = f in a neighborhood of \'x INF. 0\'. We give special attention to the case where the coefficients \'a IND. j\'(x) are linear. We also present some results about local solvability of the equation Lu = cu + f for c \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\')
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-23042014-163412 |
Date | 14 February 2014 |
Creators | Uirá Norberto Matos de Almeida |
Contributors | Paulo Leandro Dattori da Silva, Gustavo Hoepfner, José Ruidival Soares dos Santos Filho |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds