Thesis (MSc)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: In this thesis, we present a technique for the automatic detection of image orientation using Support
Vector Machines (SVMs). SVMs are able to handle feature spaces of high dimension and automatically
choose the most discriminative features for classification. We investigate the use of various
kernels, including heavy tailed RBF kernels. We compare the classification performance of SVMs
with the performance of multilayer perceptrons and a Bayesian classifier. Our results show that SVMs
out perform both of these methods in the classification of individual images. We also implement an
application for the classification of film rolls in a photographic workflow environment with 100%
classification accuracy. / AFRIKAANSE OPSOMMING: In hierdie tesis, gebruik ons 'n tegniek vir die automatiese klassifisering van beeldoriƫntasie deur
middel van Support Vector Machines (SVM's). SVM's kan kenmerkruimtes van 'n hoƫ dimensie
hanteer en kan automaties die mees belangrike kenmerke vir klassifikasie kies. Ons vors die gebruik
van verskeie kerne, insluitende RBF-kerne, na. Ons vergelyk die klassifiseringsresultate van SVM's
met die van multilaagperseptrone en 'n Bayes-klassifiseerder. Ons bewys dat SVM's beter resultate
gee as beide van hierdie metodes vir die klassifikasie van individuele beelde. Ons implementeer ook
a toepassing vir die klassifisering van rolle film in a fotografiese werkvloei-omgewing met 100%
klassifikasie akuraatheid.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/52717 |
Date | 12 1900 |
Creators | Walsh, Dane A. |
Contributors | Omlin, C.W., Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences (applied, computer, mathematics). |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Format | 79 p. : ill. |
Rights | Stellenbosch University |
Page generated in 0.0019 seconds