Return to search

Vector interpolation polynomials over finite elements

Vector interpolation functions which approximate electromagnetic vector fields are constructed in this thesis. These vector functions are to be used when the solution of Maxwell's equations involves an irrotational or solenoidal vector field. In addition the functions are chosen so that they can easily be used in the implementation of a finite element method. / Four bases are constructed. The first two span the spaces of solenoidal or irrotational two component vector polynomials of order one in two variables whereas the other two span the spaces of solenoidal or irrotational three component vector polynomials of order one in three variables. The vector polynomials are then used within the finite element method to approximate the two component current density J and electric field E over a conducting plate and the three component current density in a three dimensional wire.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.71972
Date January 1984
CreatorsNassif, Nevine.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Electrical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 000219057, proquestno: AAINL20833, Theses scanned by UMI/ProQuest.

Page generated in 0.0039 seconds