Return to search

Spatial and integrated modelling of the transmission of vector-borne and zoonotic infections

Several vector-borne and zoonotic diseases have emerged or re-emerged in Europe over these last decades. Besides climate change that influences disease risk at a regional scale, landscape changes could be responsible for local heterogeneities in disease risk. Spatial epidemiology tries to understand and predict spatial variations in disease risk by using spatial tools and spatially-explicit modelling methods.
This study investigated the impact of fine-grained landscape patterns on the transmission of vector-borne and zoonotic infections in terms of habitat suitability for vectors and/or hosts and of exposure of people to infectious agents. This was studied through three human diseases emerging or at risk of re-emergence in Europe: the rodent-borne Puumala hantavirus, the tick-borne Lyme borreliosis and the mosquito-borne malaria infections.
Statistical models were first used to study the relationships between environmental variables and host abundance, host prevalence, and human cases of Puumala hantavirus. Environmental factors were also combined with socio-economic factors to explain Puumala hantavirus and Lyme borreliosis incidence rates.
The combination of factors explaining disease transmission and the complexity of such systems led to the development of an innovative, spatially-explicit modelling method: multi-agent simulation (MAS). The MALCAM simulation model was developed to assess the risk of malaria re-emergence in southern France and simulates spatial and temporal variations in contact rate between people and potential malaria vectors. The effect of changes in potential drivers of malaria re-emergence was also simulated.
The different case studies showed that fine-grained landscape patterns influence the presence and abundance of vectors and hosts. Moreover, environmental conditions may also influence disease transmission through pathogen dispersal and the exposure of people to infectious agents. Finally, this study showed that people-vector contacts not only depend on the spatial distribution of people and potential vectors, but also on their behaviours and interactions.

Identiferoai:union.ndltd.org:BICfB/oai:ucl.ac.be:ETDUCL:BelnUcetd-01202009-133839
Date23 January 2009
CreatorsLinard, Catherine
PublisherUniversite catholique de Louvain
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-01202009-133839/
Rightsunrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses UCL. A cette fin, je donne licence à l'UCL : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0023 seconds