En este artículo se presenta una manera de optimizar una función vectorial que parte de una variedad diferenciable y llega a Rm. Definiremos un conjunto análogo al conjunto de puntos críticos de una función real y otro análogo al conjunto de máximos; también tendremos dos proposiciones parecidas a las propiedades que conocemos del cálculo: si la primera derivada es cero, el punto es crítico y si además la segunda derivada es negativo definida, el punto es máximo. Finalmente aplicaremos todo esto al caso del intercambio económico puro llegando a resultados interesantes.
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/96997 |
Date | 25 September 2017 |
Creators | Chion, Giuliana |
Publisher | Pontificia Universidad Católica del Perú |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Español |
Detected Language | Spanish |
Type | Artículo |
Format | |
Source | Pro Mathematica; Vol. 1, Núm. 2 (1987); 83-93 |
Rights | Artículo en acceso abierto, Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0014 seconds