Vegetation monitoring plays a significant role in improving the quality of life above the earth's surface. However, vegetation resources management is challenging due to climate change, global warming, and urban development. The research aims to identify and extract vegetation communities for Jupiter Inlet Lighthouse Outstanding Natural Area (JILONA) using developed Unmanned Aerial Systems (UAS) deployed with five bands of RedEdge Micasence Multispectral Sensor. UAS has a lot of potential for various applications as it provides high-resolution imagery at lower altitudes. In this study, spectral reflectance values for each vegetation species were collected using a spectroradiometer instrument. Those values were correlated with five band UAS Image values to understand the sensor's performance, also added with reflectance’s similarities and divergence for vegetation species. Pixel and Object-based classification methods were performed using 0.15 ft Multispectral Imagery to identify the vegetation classes.
Supervised Machine Learning Support Vector Machine (SVM) and Random Forest (RF) algorithms with topographical information were used to produce thematic vegetation maps. The Pixel-based procedure using the SVM algorithm generated an overall accuracy and kappa coefficient of above 90 percent. Both classification approaches have provided aesthetic vegetation thematic maps. According to statistical cross-validation findings and visual interpretation of vegetation communities, the pixel classification method outperformed object-based classification. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_82117 |
Contributors | Kesavan, Pandiyan (author), Sudhagar Nagarajan (Thesis advisor), Florida Atlantic University (Degree grantor), Department of Civil, Environmental and Geomatics Engineering, College of Engineering and Computer Science |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 109 p., application/pdf |
Rights | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds