<p dir="ltr">Autonomous vehicles require motion forecasting of their surrounding multiagents (pedestrians</p><p dir="ltr">and vehicles) to make optimal decisions for navigation. The existing methods focus on</p><p dir="ltr">techniques to utilize the positions and velocities of these agents and fail to capture semantic</p><p dir="ltr">information from the scene. Moreover, to mitigate the increase in computational complexity</p><p dir="ltr">associated with the number of agents in the scene, some works leverage Euclidean distance to</p><p dir="ltr">prune far-away agents. However, distance-based metric alone is insufficient to select relevant</p><p dir="ltr">agents and accurately perform their predictions. To resolve these issues, we propose the</p><p dir="ltr">Semantics-aware Interactive Multiagent Motion Forecasting (SIMMF) method to capture</p><p dir="ltr">semantics along with spatial information and optimally select relevant agents for motion</p><p dir="ltr">prediction. Specifically, we achieve this by implementing a semantic-aware selection of relevant</p><p dir="ltr">agents from the scene and passing them through an attention mechanism to extract</p><p dir="ltr">global encodings. These encodings along with agents’ local information, are passed through</p><p dir="ltr">an encoder to obtain time-dependent latent variables for a motion policy predicting the future</p><p dir="ltr">trajectories. Our results show that the proposed approach outperforms state-of-the-art</p><p dir="ltr">baselines and provides more accurate and scene-consistent predictions. </p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/25669956 |
Date | 28 April 2024 |
Creators | Vidyaa Krishnan Nivash (18424746) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/MULTI-AGENT_TRAJECTORY_PREDICTION_FOR_AUTONOMOUS_VEHICLES/25669956 |
Page generated in 0.0023 seconds