Return to search

Design and analysis of a learning-based testing system for certification of vehicle systems

In this work, a learning-based testing system is designed and evaluated in terms of its perfor-mance and feasibility of use in testing of safety-critical vehicle systems; the objective is to reduce testing time and costs. A literature study was conducted on the AMASS project, model-based testing and machine learning; based on which a design of the testing system was developed. The finished testing system uses a genetic algorithm for generating solutions of high fitness, which in this application implies test cases that provoke failures in a target system under test, in order for the developers to detect system defects. The target testing system is a model of Volvo’s Brake-By-Wire ABS module. It was concluded that the testing system is effective in increas-ing fitness of solutions through iteration; the performance of the machine learning algorithm is dependent on parameters such as the mutation rate and the size of the populations into which solutions are clustered. / I detta arbete har ett lärningsbaserat testsystem framställts. Dess prestanda har utvärderats samt dess lämplighet att användas för testning av säkerhetskritiska fordonssystem. Syftet är att minska kostnaden samt tidsåtgången av testningsprocessen. En litteraturstudie utfördes vilken berörde AMASS-projektet, modellbaserad testning samt maskininlärning. Baserat på detta kunde det lärningsbaserade testsystemet utvecklas. Det färdiga testsystemet använder en s.k. genetisk algoritm för att generera lösningar av hög kondition, vilket benämns fitness. I denna tillämpning innebär en hög fitness ett testfall som resulterar i ett underkänt test, då syftet med testprogrammet är att utvecklaren ska upptäcka det testade systemets brister. Det testade systemet är en modell av Volvos Brake-By-Wire ABS-modul. Det konstaterades att testsystemet är effektivt i att öka lösningarnas fitness genom iteration samt att algoritmens prestanda avgörs av dess parametrar, som mutationstakt samt populationsstorlek.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-265622
Date January 2019
CreatorsMarkros, Adam
PublisherKTH, Fordonsdynamik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2019:327

Page generated in 0.0025 seconds