This document is a report of my thesis which deals with the transformation of a metallic frame into a composite frame. A composite frame would require less assembly time since it is composed of less components. The maintenance plan, required for metallic structures, would not be required anymore. Finally, the weight of the structure could be reduced.The resolution of this problematic is done in the following way. Once the pre-design of the frame settled, the finite element model is modified accordingly. The finite element outputs give the load per finite element and enable a sizing of the whole structure per section and per element. The design of the frame is then modified according to the results, the finite element model modified again and the sizing conducted another time until the design is in accordance with the design and sizing requirements.The results of this whole procedure give a structure that can withstand the critical loads but an increase in the weight by 1,65kg. When analyzing the results, the design of the frame, taken from a metallic frame and thus higher than a usual composite frame, appears to be unappropriated. Furthermore, the sizing of the skin for buckling failure is already at its limit. A modification in the shape of the frame, and especially the height, would be the most efficient way to adapt the design.Though possible, this modification would require a laborious and important change of the finite element model, which is not the aim of the thesis but could constitute another interesting topic to work on.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-243868 |
Date | January 2018 |
Creators | Jeannin, Baptiste |
Publisher | KTH, Lättkonstruktioner |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2018:338 |
Page generated in 0.0023 seconds