Presented within this work is a new method for inertial orbit estimation of an object, either known or unknown, adaptable to a network of low-cost observation satellites. The observation satellites would only require a monocular camera for line of sight measurements. Using the line of sight measurements of each observer, a pair of orthogonal geometric planes that intersect both the observation satellite and the target are created. The intersection of the two planes in the inertial frame defines the new measurement model that is implemented with multiple observation nodes. Total system observability is analyzed and the instantaneous (per node) observability is used to remove "bad" measurements from the system. The measurement model is used in an extended Kalman filter framework and the measurement noise nonlinear transformation is addressed. Three cases are presented; first, the minimum number of required observation nodes to produce accurate results if determined. Then, a smaller number of observation nodes is analyzed to highlight the use of the instantaneous observability and its deleterious effect on the filter performance. Finally, the method is expanded out to multiple observation satellites in a constellation. For all cases, the results show that this method is capable of producing accurate orbit estimation that converges in a short time.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1439 |
Date | 01 January 2020 |
Creators | Hippelheuser, James |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.0014 seconds