Cnidarians are the largest phylum of generally toxic animals, yet their toxins and venoms have not received as much scientific attention as those of many terrestrial (snakes, scorpions, spiders, etc.) and even some marine animals (i.e. cone snails). Approximately 13,000 living cnidarian species have been described by systematists. A major rationale for their study in the past, besides scientific curiousity, was to better treat victims of their envenomation. While that goal remains a high priority, it is now appreciated that the toxins of these mostly marine animals can be very useful molecular probes for the analysis of ion channels involved in electrical signaling, immune responses and other signal transduction processes of biomedical interest. For instance, anaphylaxis was discovered by Richet (1905) during experiments with sea anemone and hydrozoan tentacular extracts. Similarly, it has recently been shown that a toxin from another sea anemone is able to potently inhibit T-lymphocyte proliferation in models of certain autoimmune diseases. Thus, these natural substances continue to be of relevance for understanding and treating human diseases. In addition to introducing phylum Cnidaria (Coelenterata), we provide a short history of early (until about 1990) research on cnidarian toxins and venoms, to provide a perspective for appreciating the scientific advances of the past two decades that are summarized in the ensuing 19 papers in this special Toxicon issue.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-18362 |
Date | 15 December 2009 |
Creators | Turk, Tom, Kem, William R. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0022 seconds