Return to search

Computational neuroscience of natural scene processing in the ventral visual pathway

Neural responses in the primate ventral visual system become more complex in the later stages of the pathway. For example, not only do neurons in IT cortex respond to complete objects, they also learn to respond invariantly with respect to the viewing angle of an object and also with respect to the location of an object. These types of neural responses have helped guide past research with VisNet, a computational model of the primate ventral visual pathway that self-organises during learning. In particular, previous research has focussed on presenting to the model one object at a time during training, and has placed emphasis on the transform invariant response properties of the output neurons of the model that consequently develop. This doctoral thesis extends previous VisNet research and investigates the performance of the model with a range of more challenging and ecologically valid training paradigms. For example, when multiple objects are presented to the network during training, or when objects partially occlude one another during training. The different mechanisms that help output neurons to develop object selective, transform invariant responses during learning are proposed and explored. Such mechanisms include the statistical decoupling of objects through multiple object pairings, and the separation of object representations by independent motion. Consideration is also given to the heterogeneous response properties of neurons that develop during learning. For example, although IT neurons demonstrate a number of differing invariances, they also convey spatial information and view specific information about the objects presented on the retina. A updated, scaled-up version of the VisNet model, with a significantly larger retina, is introduced in order to explore these heterogeneous neural response properties.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:606387
Date January 2012
CreatorsTromans, James Matthew
ContributorsStringer, Simon
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:b82e1332-df7b-41db-9612-879c7a7dda39

Page generated in 0.0016 seconds