Return to search

Treatment of Right Ventricular Failure through Partial Volume Exclusion : An Experimental Study

Implantation of a left ventricular assist device (LVAD) is a potential treatment in terminal heart failure. Right ventricular (RV) failure is a severe complication in these patients and sometimes requires additional placement of a right ventricular assist device (RVAD). RVAD implantation, however, is an invasive treatment associated with both increased mortality and morbidity. The aim of this thesis was to study whether partial volume exclusion of the RV through a modified Glenn shunt or cavoaortic shunt could treat severe RV failure. The ultimate goal would be to use it as an alternative to a RVAD in RV failure during LVAD therapy. Swine were used as the model animal in all studies. In Study I, experimental RV failure was induced by ischemia, and verified by hemodynamic measurements and genetic expression. Treatment with a modified Glenn shunt reduced venous stasis and improved hemodynamics in general. In Study II, experimental RV failure was induced by the same method as in Study I. Treatment with a cavoaortic shunt in addition to LVAD therapy proved to reduce venous stasis and improved hemodynamics in general, which was feasible with preserved oxygen delivery despite cyanotic shunting. In Study III, experimental RV failure was induced by pulmonary banding, and verified by hemodynamic measurements and genetic expression. Treatment with a modified Glenn shunt reduced venous stasis but did not improve hemodynamics in general compared with a control group. In Study IV, the effects of LVAD therapy and subsequent treatment with a modified Glenn shunt on the normal RV function were studied. It demonstrated that LVAD therapy can put strain on the RV by increasing stroke work and end-diastolic volume, and that these effects can be reversed by treatment with a modified Glenn shunt during LVAD therapy. In conclusion, partial volume exclusion through a modified Glenn shunt or cavoaortic shunt is a feasible treatment of experimental RV failure. Thus, it could potentially be used as an alternative treatment to a RVAD in severe RV failure during LVAD therapy.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-248164
Date January 2015
CreatorsVikholm, Per
PublisherUppsala universitet, Thoraxkirurgi, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1096

Page generated in 0.0013 seconds