Der Verbundwerkstoff Stahlbeton zeichnet sich durch das effektive Zusammenwirken seiner beiden Einzelkomponenten Stahl und Beton aus. Dieses wiederum kann nur durch ausreichend gute Verbundbedingungen zwischen beiden Baustoffen gewährleistet werden. Die Verbundeigenschaften werden von zahlreichen Faktoren beeinflusst, zu denen u.a. die Oberflächenprofilierung des Stahls, die Betonfestigkeit und die Umschnürungswirkung durch den umgebenden Beton oder eine Querbewehrung zählen. Auch eine quer zum Stab angreifende Belastung kann einen erheblichen Einfluss auf den Verbundmechanismus und die Verbundversagensart haben. Bei Stahlbetonbauteilen unter einer zweiaxialen Zugbelastung, wie sie z.B. in Behälterwänden oder zweiachsig gespannten Platten auftritt, unterliegt die Bewehrung sowohl einer Längszug- als auch einer Querzugbeanspruchung.
Im Rahmen der vorliegenden Arbeit wurde der Einfluss einer Querzugbelastung auf das Verbundverhalten zwischen Rippenstählen und Normalbeton mit Hilfe von würfelförmigen Ausziehkörpern mit einer kurzen Verbundlänge untersucht. Dabei lag das Querzugniveau stets unterhalb der Risslast des Betons, so dass keine Risse entlang des einbetonierten Stabes auftraten. Neben der Höhe der Querzugbelastung wurden im Versuchsprogramm die Betonfestigkeit, der Stabdurchmesser und die Betondeckung variiert.
Anhand der Versuchsergebnisse konnte gezeigt werden, dass sich auch unter einer Querzugbelastung der Verlauf der Verbundspannungs-Schlupf-Beziehung nicht ändert. Die Art des Verbundversagens wird jedoch maßgeblich durch den Querzug beeinflusst, welcher ein Spaltbruchversagen in jedem Fall begünstigt. Mit steigendem Querzug tritt auch bei großen Betondeckungen statt eines Ausziehversagens ein Spaltbruchversagen ein. Mittels des vorgeschlagenen Berechnungsmodells können in Abhängigkeit des Querzugniveaus und der Größe der Betondeckung Grenzlinien für den Wechsel im Verbundversagensmodus bestimmt werden. Hierbei wurde ebenfalls der Einfluss der Probekörpergeometrie auf die Versuchsergebnisse in die Berechnung einbezogen, so dass die angegebenen Grenzlinien auch für reale Einbettungslängen der Bewehrung gelten.
Weiterhin wurde anhand der Versuchsdaten sowie eines Datensatzes aus der Literatur ein Verbundmodell für kurze Verbundlängen entwickelt, das den Einfluss der bezogenen Rippenfläche der Bewehrung und der Betonfestigkeit sowohl auf die Verbundspannungen als auch auf die zugehörigen Schlupfwerte berücksichtigt. Über einen zusätzlichen Datensatz zum Einfluss der Verbundlänge im Ausziehversuch konnte ebenfalls die Abhängigkeit zwischen den mittleren Verbundspannungen, den zugehörigen Schlupfwerten und der Verbundlänge spezifiziert werden. Somit ist eine Übertragbarkeit der Ergebnisse von Ausziehversuchen mit kurzen Verbundlängen auf eine reale Einbettungslänge im Bauteil möglich.
Für die Bemessung von Stahlbetonkonstruktionen in den Grenzzuständen der Tragfähigkeit und der Gebrauchstauglichkeit erfolgt die Ableitung geeigneter Verformungskriterien für die Relativverschiebung zwischen Betonstahl und Beton und deren Verifizierung an Versuchsdaten aus der Literatur. Die aufgestellten Verformungskriterien in Abhängigkeit der Stahlspannung erlauben eine direkte Ermittlung bemessungsrelevanter Verbundspannungen anhand experimenteller Ausziehversuche. Die Berücksichtigung einer Querzugbelastung ist dabei in allen vorgestellten Berechnungsansätzen ebenfalls möglich. / Reinforced concrete as composite material is characterised by an effective interaction of its individual components reinforcing steel and concrete. This only can be assured by adequate bond conditions between these two materials. The bond quality is influenced by a wide range of parameters, amongst others including the rib geometry of the bar, the concrete strength and the confining action by the surrounding concrete or transverse reinforcement. Moreover loads, which act transverse to the reinforcing bar, can influence the bond mechanism and the bond failure mode significantly. Reinforced concrete structures, such as containment walls or two-way slabs, are often exposed to multiaxial loading conditions. In case of biaxial tensile stresses, reinforcement and surrounding concrete are loaded in tension in longitudinal as well as in transverse direction.
An extensive experimental program was carried out in order to investigate the bond behaviour between reinforcing steel and normal strength concrete due to transverse tension. Cubic-shaped pullout specimens with a short bond length were used. The transverse tension level remained always below the cracking stress of concrete, meaning that no crack occurred along the pullout bar. The test program contained the variation of the transverse tension level, the concrete strength, the bar diameter and the concrete cover.
From the test results no systematic influence of the transverse tension level on the shape of the bond stress-slip-relationship can be detected. The bond failure mode is significantly influenced by transverse tension, which promotes splitting failure. The higher the transverse tension level, even for high concrete covers, splitting failure occurs instead of pulling out the bar. From the test results, a failure criterion depending on the concrete cover and the transverse tension level could be determined, which indicates the failure mode and corresponding bond stress. For this purpose, the influence of the specimen geometry on the test results was considered, which results in a failure criterion that is also valid for real embedment lengths of the reinforcement.
Furthermore, a bond model for short bond lengths has been developed, based on the test results and a dataset from literature. The model considers the influence of the related rib area of the reinforcing bar and the concrete strength on the bond stresses as well as on the corresponding slip values. By an additional dataset concerning the influence of bond length in pullout tests, the bond stresses and corresponding slip values could be specified as a function of the bond length. Therefore, the test results of pullout test with short bond lengths are transferable to real embedment lengths in structural elements.
For the structural design of reinforced concrete elements in the ultimate and serviceability limit states, appli\\-cable deformation criterions concerning the relative displacement between reinforcing steel and concrete has been derived and verified by test data from literature. By means of the developed deformations criterions dependent on the steel stress, design bond stresses can be determined directly from experimental pullout tests. The consideration of transverse tensile loads is also possible for all presented design formulas.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27464 |
Date | 28 November 2013 |
Creators | Ritter, Laura |
Contributors | Curbach, Manfred, Keuser, Manfred, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0071 seconds