Esta dissertação oferece uma introdução às já conhecidas álgebras de Krichever-Novikov se restringindo aos exemplos abordados previamente em Bremner (1995), Cox (2013), Cox e Jurisich (2013), Cox, Futorny e Martins (2014), Bueno, Cox e Furtony (2009), e as definições de estruturas que podem auxiliar a estudar estes espaços, incluindo álgebras de Lie afins, álgebras de loop e módulos de Verma. Considerando K uma álgebra de Krichever-Novikov do tipo 4-ponto, 3-ponto, elíptica ou DJKM e suas respectivas subálgebras de Heisenberg K\' = K hK , onde hK é a subálgebra de Cartan de K , nos Teoremas 3.2.3, 3.4.3, 3.6.3 e 3.8.3 são apresentados critérios explícitos de irredutibilidade para K\'-módulos do tipo -Verma. / This work gives an introduction to the already known Krichever-Novikov algebras limited only to the examples approached before in Bremner (1995), Cox (2013), Cox e Jurisich (2013), Cox, Futorny and Martins (2014), Bueno, Cox and Furtony (2009), and the structures definitions that could help us to study these spaces, including affine Lie algebras, loop algebras and Verma modules. Let K be a 4-point, 3-point, elliptic or DJKM Krichever-Novikov algebra and its respective Heisenberg subalgebras K\' = K hK , where hK is the K Cartan subalgebra. In the Theorems 3.2.3, 3.4.3, 3.6.3 and 3.8.3 we will give a explicit irreducibility criteria for -Verma K\'-modules.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05122017-200848 |
Date | 20 February 2017 |
Creators | Santos, Felipe Albino dos |
Contributors | Futorny, Vyacheslav |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0113 seconds