VLSI testing poses a number of problems which includes the selection of test techniques, the determination of acceptable fault coverage levels, and test vector generation. Available device test techniques are examined and compared. Design rules should be employed to assure the design is testable. Logic simulation systems and available test utilities are compared. The various methods of test vector generation are also examined. The selection criteria for test techniques are identified. A table of proposed design rules is included. Testability measurement utilities can be used to statistically predict the test generation effort. Field reject rates and fault coverage are statistically related. Acceptable field reject rates can be achieved with less than full test vector fault coverage. The methods and techniques which are examined form the basis of the recommended integrated test plan. The methods of automatic test vector generation are relatively primitive but are improving.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-5702 |
Date | 01 January 1984 |
Creators | Didden, William S. |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Retrospective Theses and Dissertations |
Rights | Public Domain |
Page generated in 0.0019 seconds