Return to search

Integrated structural design, vibration control, and aeroelastic tailoring by multiobjective optimization

The integrated design of a structure and its control system was treated as a multiobjective optimization problem. Structural mass, a quadratic performance index, and the flutter speed constituted the vector objective function. The closed-loop performance index was taken as the time integral of the Hamiltonian. Constraints on natural frequencies and aeroelastic damping were also considered. Derivatives of the objective and constraint functions with respect to structural and control design variables were derived for a finite element beam model of the structure and constant feedback gains determined by Independent Modal Space Control. Pareto optimal designs generated for a simple beam and a tetrahedral truss demonstrated the benefit of solving the integrated structural and control optimization problem. The use of quasi-steady aerodynamic strip theory with a thin-wall box beam model showed that the integrated design for a high aspect ratio, unswept, straight, isotropic wing can be separable. Finally, an efficient modal solution of the flutter equation facilitated the aeroelastic tailoring of a low aspect ratio, forward swept, composite plate wing model. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/38912
Date28 July 2008
CreatorsCanfield, Robert A.
ContributorsEngineering Mechanics, Meirovitch, Leonard, Baumann, William T., Librescu, Liviu, Henneke, Edmund G. II, Hendricks, Scott L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatvii, 165 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 27864509, LD5655.V856_1992.C364.pdf

Page generated in 0.0023 seconds