Return to search

The state-switched absorber used for vibration control of continuous systems

A State-Switched Absorber (SSA) is a device capable of instantaneously changing its stiffness, thus it can switch between resonance frequencies, increasing its effective bandwidth as compared to classical tuned vibration absorbers for vibration control. This dissertation considers the performance of the SSA for vibration suppression of continuous systems, specifically a beam and a plate. The SSA tuning frequencies and attachment point on the continuous body were optimized using a simulated annealing algorithm. It was found that an optimized SSA outperforms and optimized TVA at controlling vibrations of both a beam and a plate. These performance gains were also observed experimentally employing magneto-rheological elastomers to achieve a stiffness change. This dissertation also considers zero strain switching criteria and the maximum work extraction switching rule used by the SSA. The zero strain switching criteria ensures the system remains stable as no energy is added or released across a switch event. The maximum work extraction switching rule is designed to maximize the power dissipated by the absorber, but also guarantees minimization of the motion of the base to which the absorber is attached.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/6850
Date15 February 2005
CreatorsHoldhusen, Mark Horner
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format1200826 bytes, application/pdf

Page generated in 0.0016 seconds