by Julian Guerra. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web. / This work seeks to understand water turbine noise generation and to make preliminary estimations of the noise levels. Any structure attached to a turbine upstream its blades will generate unsteady fluctuating loads on the blade's surface, which are proportional to the radiated acoustic pressure. The noise levels of a simplified turbine based on existing designs surpass the ambient noise levels of the ocean at low frequencies (< 20 Hz) by approximately 50 dB ref 1 μPa and stay under the ambient noise levels at higher frequencies for a blade-passing frequency of 0.83 Hz and point of observation (100 m, 45 degrees, 45 degrees) from the hub. Streamlining the cross-section of the upstream structure as well as reducing its width decrease the noise levels by approximately 40 dB ref 1 μPa, at low frequencies and moderately increase them at higher frequencies. Increasing the structure-rotor distance decreases the noise levels with increasing frequencies (> 30 Hz).
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3633 |
Contributors | Guerra, Julian., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | x, 82 p. : ill. (some col.), electronic |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0016 seconds