The Point Sur Lighthouse is an unreinforced stone masonry building completed in 1889 on the central coast of California. The lighthouse is listed on the National Register of Historic Places and is still an active aid to navigation. The original first-order Fresnel lens was removed from the lantern room and placed in safekeeping due to its high risk of damage in the event of a strong earthquake. The lens has been approved to return to its original setting but the seismic performance of the building must first be assessed in order to ensure the safety of the lens and lighthouse, specifically the out-of-plane behavior of the unreinforced masonry walls, the implementation of possible seismic retrofit schemes, and the effects of the lens’s added weight.
This research focuses on the dynamic behavior of the lighthouse in its current state and the changes in the dynamic behavior each of the proposed seismic retrofit schemes might cause. For the purposes of this research, dynamic behavior is considered as natural frequencies, mode shapes, and related structural properties. The dynamic behavior of the lighthouse was assessed using two main methods: forced vibration testing and finite element computer modeling. Forced vibration testing is a nondestructive testing method that can be used to directly characterize dynamic behavior of a structure, and finite element computer modeling is useful for the design and simulation of dynamic behavior of both new and existing structures. The combination of these two methods on the Point Sur Lighthouse will work to develop and prove state-of-the-art seismic retrofitting techniques.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3727 |
Date | 01 June 2020 |
Creators | Dekker, Nicholas M |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0039 seconds