Return to search

Semantics of Video Shots for Content-based Retrieval

Content-based video retrieval research combines expertise from many different areas, such as signal processing, machine learning, pattern recognition, and computer vision. As video extends into both the spatial and the temporal domain, we require techniques for the temporal decomposition of footage so that specific content can be accessed. This content may then be semantically classified - ideally in an automated process - to enable filtering, browsing, and searching. An important aspect that must be considered is that pictorial representation of information may be interpreted differently by individual users because it is less specific than its textual representation. In this thesis, we address several fundamental issues of content-based video retrieval for effective handling of digital footage. Temporal segmentation, the common first step in handling digital video, is the decomposition of video streams into smaller, semantically coherent entities. This is usually performed by detecting the transitions that separate single camera takes. While abrupt transitions - cuts - can be detected relatively well with existing techniques, effective detection of gradual transitions remains difficult. We present our approach to temporal video segmentation, proposing a novel algorithm that evaluates sets of frames using a relatively simple histogram feature. Our technique has been shown to range among the best existing shot segmentation algorithms in large-scale evaluations. The next step is semantic classification of each video segment to generate an index for content-based retrieval in video databases. Machine learning techniques can be applied effectively to classify video content. However, these techniques require manually classified examples for training before automatic classification of unseen content can be carried out. Manually classifying training examples is not trivial because of the implied ambiguity of visual content. We propose an unsupervised learning approach based on latent class modelling in which we obtain multiple judgements per video shot and model the users' response behaviour over a large collection of shots. This technique yields a more generic classification of the visual content. Moreover, it enables the quality assessment of the classification, and maximises the number of training examples by resolving disagreement. We apply this approach to data from a large-scale, collaborative annotation effort and present ways to improve the effectiveness for manual annotation of visual content by better design and specification of the process. Automatic speech recognition techniques along with semantic classification of video content can be used to implement video search using textual queries. This requires the application of text search techniques to video and the combination of different information sources. We explore several text-based query expansion techniques for speech-based video retrieval, and propose a fusion method to improve overall effectiveness. To combine both text and visual search approaches, we explore a fusion technique that combines spoken information and visual information using semantic keywords automatically assigned to the footage based on the visual content. The techniques that we propose help to facilitate effective content-based video retrieval and highlight the importance of considering different user interpretations of visual content. This allows better understanding of video content and a more holistic approach to multimedia retrieval in the future.

Identiferoai:union.ndltd.org:ADTP/210530
Date January 2007
CreatorsVolkmer, Timo, timovolkmer@gmx.net
PublisherRMIT University. Computer Science and Information Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Timo Volkmer

Page generated in 0.0019 seconds