This thesis compares hand-designed features with features learned by feature learning methods in video classification. The features learned by Principal Component Analysis whitening, Independent subspace analysis and Sparse Autoencoders were tested in a standard Bag of Visual Word classification paradigm replacing hand-designed features (e.g. SIFT, HOG, HOF). The classification performance was measured on Human Motion DataBase and YouTube Action Data Set. Learned features showed better performance than the hand-desined features. The combination of hand-designed features and learned features by Multiple Kernel Learning method showed even better performance, including cases when hand-designed features and learned features achieved not so good performance separately.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:236367 |
Date | January 2013 |
Creators | Behúň, Kamil |
Contributors | Herout, Adam, Hradiš, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds