In a wireless and mobile communication paradigm, distribution and sharing of video content often occurs over unfriendly network environments constrained by lack of sufficient bandwidth, and prone to jitter, delay and packet losses. The research presented in this thesis proposed an assortment of application-specific optimizations designed to enable high-quality video communication over bandwidth constrained and unreliable channels. This assortment of solutions, termed herein as the Application Specific Video Coding and Delivery (ASVCD) toolkit, comprises of content and network adaptive approaches such as Region of Interest (ROI) video coding, Multiple Representation Coding (MRC), and Multiple Representation Coding of the Region of Interest (ROI + MRC). Thus, the effectiveness of ROI based video-coding in facilitating diagnostically lossless delivery of surgical videos over very low bandwidth channels was studied in this thesis. Furthermore, to facilitate error resilient video delivery over channels prone to burst losses and signal loss intervals, the MRC scheme was presented in this thesis. Finally, the thesis proposed a scheme for unequal protection of the ROI in the video by using the MRC scheme to effectively enable a distance learning application. To summarize, the ASVCD toolkit contributed in enabling high-quality video communications applications to become seamless and pervasive.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/47577 |
Date | 14 March 2013 |
Creators | Khire, Sourabh Mohan |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0015 seconds