Foot-and-mouth disease virus (FMDV) is a highly infectious virus affecting cloven-hoofed animals. The most prominent of its clinical signs is the development of vesicular lesions on the feet and in or around the mouth, which are a consequence of extensive FMDV-induced epithelial cell death. Currently, there is no certain biological knowledge on why extensive epithelial cell death occurs in some FMDV-infected tissues, but not in others. Using the epithelial tissues of tongue and dorsal soft palate as examples of a tissue where lesions occur and one that does not visibly exhibit FMDV-induced cell death, this work aims to identify the potential drivers of epithelial cell death and survival. A partial differential equation (PDE) model informed by experimental data on epithelial structure, is used to test epithelium thickness and cell layer structure as potential determinants. A second PDE model investigates FMDV-interferon (IFN) dynamics and their impact on the levels of cell death and survival, while an experimental study is undertaken to provide data for model validation. The work carried out casts light on the important role of a variety of factors including FMDV replication, IFN production and release, and IFN antiviral action.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:617860 |
Date | January 2014 |
Creators | Giorgakoudi, Kyriaki |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/14931 |
Page generated in 0.0018 seconds