Hepatitis C virus (HCV) replication is directed by NS5b, the viral RNA dependent RNA polymerase (RdRp). To date, our understanding of the HCV polymerase has come almost entirely from genotype 1. The aim of this study was to examine the influence of sequence variation in the polymerase region by characterising a polymerase derived from genotype 3a. The genotype 3a CB strain polymerase was cloned into the bacterial expression vector pTrcHis2C incorporating a hexahistidine tag to facilitate purification. An optimised process produced 2.5 mg of highly purified recombinant protein per litre of bacterial culture. The 3a preparation possessed an RdRp activity and could utilise both homopolymeric and heteropolymeric RNA templates. Optimal activity was seen at 30oC at pH 8 in reactions containing 160nM enzyme, 10??g/ml RNA template and 2.5mM MnCl2. Subsequently, three genotype 1b polymerases including the HCV-A, Con1 and JK1 strains were cloned for the comparison of activity under identical conditions. Steady state kinetic parameters for GMP incorporation revealed the 3a polymerase exhibited the highest activity, with an almost two fold higher catalytic efficiency (Kcat/Km) than HCVA-1b, primarily due to differences in Km for GTP (2.984??M vs 5.134??M). Furthermore, the 3a polymerase was 3.5 fold and 15 fold more active than JK1-1b and Con1-1b respectively. Improving our understanding of the influence of sequence difference on polymerase activity, particularly in the context of replication will be crucial to developing effective antiviral therapies.
Identifer | oai:union.ndltd.org:ADTP/212628 |
Date | January 2007 |
Creators | Clancy, Leighton Edward, Biotechnology And Biomolecular Sciences, UNSW |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0015 seconds