Este trabalho propõe uma abordagem para o rastreamento de objetos observados em seqüências de imagens. O objetivo principal é o desenvolvimento de uma metodologia eficiente, capaz de realizar o rastreamento de um ou mais alvos heterogêneos, usando pouca informação a priori sobre os mesmos. Para alcançar este objetivo é proposta a descrição dos alvos livre de um modelo explícito de forma, através de uma representação baseada em contornos, a qual é interessante pois tem a capacidade de adaptar-se dinamicamente a alvos com formas heterogêneas de modo eficaz. Além disso, é usado um modelo de movimento único e simples, considerando somente translação e mudança de escala quadro a quadro. Este modelo possibilita o tratamento de movimentos suaves e previamente desconhecidos dos alvos. O rastreamento de cada alvo é executado com a combinação de dois Filtros de Kalman: um para estimação do movimento e outro para estimação do contorno. O modelo de observação é baseado em linhas de medida 1D fixadas ao longo do contorno estimado e tem baixo custo computacional. Experimentos foram conduzidos para avaliar a eficácia e eficiência da proposta, utilizando seqüências de imagens controladas e reais. Os resultados mostram que a abordagem proposta é capaz de rastrear alvos distintos (figuras geométricas, pessoas e robôs móveis), executando diferentes movimentos considerando a posição de observação da câmera. Embora haja uma relação crítica entre a variação quadro a quadro do movimento e da forma dos alvos, e o nível de ruído nas imagens, a abordagem é adequada nos casos em que informações detalhadas a respeito do movimento e da forma dos alvos não são disponíveis. / This work proposes an approach to track objects observed in sequences of images. The main objective is the development of an efficient methodology, capable of performing the tracking of one or more heterogeneous targets by using a small amount of a priori information about them. To accomplish this objective we propose a description of the targets free of an explicit shape model. This description is a contour-based representation, which is interesting because it is capable of adapting dynamically to targets that have heterogeneous shapes in an effective way. Besides this, a unique and simple movement model is used, considering only translation and scaling frame by frame. This model allows treating smooth and previously unknown targets movements. The tracking of each target is executed by the combination of two Kalman Filters: one used to estimate movement and another one to estimate contour. The observation model is based on 1D measurement lines fixed along the estimated contour and requires low computational power. Experiments were performed to evaluate the efficacy and the efficiency of the proposal, using controlled and real image sequences. Results show that the proposed approach is capable of tracking distinct targets (geometric figures, human bodies and mobile robots), which execute different movements regarding the observation position of the camera. Despite the critical tradeoff between the frame by frame variation of the targets movements and shapes and the level of noise in the images, the approach showed to be adequate for those cases of application where detailed information about target movement and shape are not available.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13072007-165802 |
Date | 30 March 2007 |
Creators | Bem, Rodrigo Andrade de |
Contributors | Reali Costa, Anna Helena |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds