Hexagonal closed packed (hcp) materials, in contrast to cubic materials, possess
several processing challenges due to their anisotropic structural response, the wide
variety of deformation textures they exhibit, and limited ductility at room temperature.
The aim of this work is to investigate, both experimentally and theoretically, the effect
os severe plastic deformation, ultrafine grain sizes, crystallographic textures and number
of phases on the flow stress anisotropy and tension compression asymmetry, and the
mechanisms responsible for these phenomena in two hcp materials: AZ31B Mg alloy
consisting of one phase and Zn-8wt.% Al that has an hcp matrix with a secondary facecentered
cubic (fcc) phase. Mg and its alloys have high specific strength that can
potentially meet the high demand for light weight structural materials and low fuelconsumption
in transportation. Zn-Al alloys, on the other hand, can be potential
substitutes for several ferrous and non-ferrous materials because of their good
mechanical and tribological properties. Both alloys have been successfully processed
using equal channel angular extrusion (ECAE) following different processing routes in order to produce samples with a wide variety of microstructures and crystallographic
textures for revealing the relationship between microstructural parameters,
crystallographic texture and resulting flow stress anisotropy at room temperature. For
AZ31B Mg alloy, the texture evolution during ECAE following conventional and hybrid
ECAE routes was successfully predicted using visco-plastic self-consistent (VPSC)
crystal plasticity model. The flow stress anisotropy and tension-compression (T/C)
asymmetry of the as received and processed samples at room temperature were
measured and predicted using the same VPSC model coupled with a dislocation-based
hardening scheme. The governing mechanisms behind these phenomena are revealed as
functions of grains size and crystallographic texture. It was found that the variation in
flow stress anisotropy and T/C asymmetry among samples can be explained based on the
texture that is generated after each processing path. Therefore, it is possible to control
the flow anisotropy and T/C asymmetry in this alloy and similar Mg alloys by
controlling the processing route and number of passes, and the selection of processing
conditions can be optimized using VPSC simulations. In Zn-8wt.% Al alloy, the hard
phase size, morphology, and distribution were found to control the anisotropy in the flow
strength and elongation to failure of the ECAE processed samples.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-12-7466 |
Date | 2009 December 1900 |
Creators | Al Maharbi, Majid H. |
Contributors | Karaman, Ibrahim |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | application/pdf |
Page generated in 0.0019 seconds