Two topics dealing with adhesion are addressed: an investigation of the cling of thin polymeric films and an analysis of the effects of viscoelasticity on adhesive systems involving curvature mismatch. The results of an investigation into the mechanisms of adhesion and debonding energy associated with the cling between polymeric films and various substrates is presented first. The thermodynamic work of adhesion, electrostatic attraction, and substrate roughness apparently play significant roles in the cling of a film to a substrate. Peel tests are conducted and strain energy release rates are determined which show different debonding energies for the various film-substrate systems. In the analysis of adhesive systems involving curvature mismatch, the focus of the work is on modeling the bond behavior using the solution to the beam on a viscoelastic foundation problem. In addition, the behavior of the adhesive is modeled with a recursive technique using a stress distribution obtained from the solution to the beam on an elastic foundation problem. Debond rate tests are described and conducted so that experimental results may be compared with analytical results. For both adhesion topics, the mechanisms and mechanics of adhesion are considered and experimental tests are conducted. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/45472 |
Date | 07 November 2008 |
Creators | Randow, Charles L. |
Contributors | Engineering Mechanics |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis, Text |
Format | vii, 106 leaves, BTD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 36788891, LD5655.V855_1996.R3636.pdf |
Page generated in 0.0027 seconds