Return to search

On the motion of viscous compressible flows. / CUHK electronic theses & dissertations collection

Finally, we prove that weak solutions to the compressible Navier-Stokes equations with the Navier boundary condition stabilize to static equilibrium states under a fair condition. / First, we show that the most general class of weak solutions to one-dimensional full compressible Navier-Stokes equations do not exhibit vacuum states in a finite time provided that no vacuum is present initially with the minimum physical assumptions on the data. Moreover, two initially non interacting vacuum regions will never meet each other in the future. / Secondly, we construct the local classical solutions to the compressible Navier-Stokes equations for initial vacuum far fields. In this case, we describe the blow-up phenomena of two-dimensional compact support smooth spherically symmetric solutions. When the far field of the initial state is away from vacuum, we obtain the global classical solutions and show the large time blow-up behavior of the gradient of the density. / This thesis deals with some important problems of compressible Navier-Stokes equations, including the well-posedness of the Cauchy problem, the regularity of the weak solutions constructed by Lions and Feireisl, and the dynamics of vacuum states, etc.. / Luo, Zhen. / Adviser: Zhouping Xin. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 152-161). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344546
Date January 2010
ContributorsLuo, Zhen, Chinese University of Hong Kong Graduate School. Division of Mathematics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (ii, 161 leaves)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0018 seconds