Les travaux présentés dans cette thèse concernent la reconstruction tridimensionnelle de l'environnement d'un robot mobile, à partir d'informations de vision omnidirectionnelle, pour la préparation d'interventions. Nous nous intéressons dans un premier temps à la conception d'une architecture matérielle adaptée aux problématiques de la reconstruction 3D et de la navigation autonome. Le calibrage d'un système de vision est une étape indispensable dès lors que celui-ci est destiné à effectuer des mesures sur son environnement. Cette phase consiste à modéliser le système pour établir la relation mathématique liant les points 3D et leurs projections dans les images. Après une discussion sur le choix du modèle, nous présentons une méthodologie pour estimer les paramètres du modèle retenu. La structure stéréoscopique du capteur que nous avons développé rend possible la reconstruction tridimensionnelle de l'environnement sans déplacement. Nous proposons donc des algorithmes permettant la reconstruction dense de l'environnement, ainsi que des algorithmes de détection de primitives dans les images omnidirectionnelles. Lorsque le capteur est en mouvement, nous exploitons ses déplacements pour enrichir le modèle 3D. Notre principale contribution porte sur le développement d'un algorithme d'ajustement de faisceaux pour les capteurs stéréoscopiques omnidirectionnels qui permet d'obtenir une estimation des déplacements en ne nécessitant que des données visuelles.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00711922 |
Date | 19 April 2010 |
Creators | Boutteau, Rémi |
Publisher | Université de Rouen |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds