Une des techniques alternatives au GPS pour le développement d’un système d’assistance à la navigationpédestre en milieux urbains est la vision embarquée. La localisation du porteur de la caméra s’appuie alorssur l’estimation de la pose à partir des images acquises au cours du cheminement. En s’inspirant destravaux antérieurs sur la navigation autonome de robots, cette thèse explore deux approches dans le cadrespécifique de la localisation pédestre. La première méthode de localisation s’appuie sur des appariementsde primitives images avec une cartographie 3D pré-estimée de l’environnement. Elle permet une estimationprécise de la pose complète de la caméra (6 ddl), mais les expérimentations montrent des limitationscritiques de robustesse et temps de calcul liées à l’étape de mise en correspondance. Une solutionalternative est proposée en utilisant les points de fuite. L’orientation de la caméra (3ddl) est estimée defaçon robuste et rapide par le suivi de 3 points de fuites orthogonaux dans une séquence vidéo. L’algorithmedéveloppé permet une localisation pédestre indoor en deux étapes : une phase d’apprentissage hors lignedéfinit un itinéraire de référence en sélectionnant des images clef au long du parcours, puis, en phase delocalisation, une position approximative mais réaliste du porteur est estimée en temps réel en comparant lesorientations de la caméra dans l’image courante et celle de référence. / One of the alternative techniques to GPS for the development of pedestrian navigation assistive systems inurban environments is embedded vision. The walker localization is, then, based on the camera poseestimation from images acquired during the path. Inspired by previous work on autonomous navigation ofmobile robots, this thesis explores two approaches in the specific context of pedestrian localization. The firstlocalization method is based on image primitive matching with a pre-estimated 3D map of the environment. Itallows an accurate estimate of the complete pose of the camera (6 dof), but experiments show criticallimitations of robustness and computation time related to the matching step. An alternative solution isproposed using vanishing points. Robust and fast camera orientation (3 dof) is estimated by tracking threeorthogonal vanishing points in a video sequence. The developed algorithm allows indoor pedestrianlocalization in two steps: an off-line learning step defines a reference path by selecting key frames along theway, then, in localization step, an approximate but realistic position of the walker is estimated in real time bycomparing the orientation of the camera in the current image and that of reference.
Identifer | oai:union.ndltd.org:theses.fr/2012ORLE2063 |
Date | 06 December 2012 |
Creators | Elloumi, Wael |
Contributors | Orléans, Treuillet, Sylvie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds