Le virage technologique débutant dans le secteur du génie civil a permis la création d'outils et de procédés tournés vers le numérique et l'automatisation. Le béton projeté, qui comprend un grand potentiel d'automatisation, ne doit pas faire exception à la règle puisque l'avancement et l'optimisation des méthodes de production sont clairement poussés en avant par cet élan technologique. Le Laboratoire de béton projeté de l'Université Laval travaille depuis plus de 15 ans sur plusieurs initiatives de recherche visant à comprendre et à améliorer la méthode de mise en place qu'est le béton projeté. Sur cette base de réflexion, un effort de recherche visant à réduire le rebond et à automatiser le procédé par voie sèche avec un bras robotisé a été lancé avec le projet SPARO. Le présent projet de recherche se place dans sa continuité directe, et il s'articule autour de 4 axes principaux : optimisation et compréhension du phénomène de rebond, étude de l'influence de l'automatisation du procédé sur les propriétés du béton projeté durci, amélioration de l'autonomie du procédé et enfin, développement d'une assistance au lancier. La première partie du projet contribue à la compréhension des interactions entre les différentes trajectoires et le rebond, notamment avec l'utilisation de la trajectoire dite planétaire. Elle présente des valeurs de rebond remarquablement faibles et proches de celles obtenues usuellement par voie humide; elle apporte le concept de rebond fondamental du matériau et génère moins de rebonds que la trajectoire « classique » largement adoptée par les lanciers. L'hypothèse soutenue est que la trajectoire optimale est celle qui, pour une consigne d'épaisseur donnée, couvre une surface de taille maximale, tout en s'assurant que chaque portion de cette surface soit impactée, ou excitée, en permanence de façon à dépasser une fréquence énergétique critique du substrat, facilitant la capture des particules. L'étude des propriétés du béton projeté à l'état durci souligne que la technique de mise en place a un effet important sur la résistance en compression. Une diminution de 7% est observée entre la méthode automatisée et un projeteur traditionnel; en revanche, aucun changement n'a été observé pour la porosité. Dans la contribution à l'automatisation globale du système, l'utilisation de la vision numérique a montré des résultats très satisfaisants. Une méthode automatique de mesure de l'épaisseur projetée et de sa correction a été développée à l'aide d'un capteur LIDAR. En parallèle, l'adaptation de certains capteurs a permis de développer un système d'aide au lancier, offrant des renseignements sur l'angle et la distance de la lance par rapport à la surface projeté. / The technological transition in civil engineering has led to the creation of tools and processes oriented towards digitalization and automation. Shotcrete, which presents a great potential for automation, should not be an exception to the trend since the advancement and optimization of production methods are clearly pushed forward by this technological boom. The Shotcrete Laboratory of Université Laval has been working for more than 15 years on several research initiatives in order to understand and improve the shotcrete process. On this basis, a research initiative aimed at reducing rebound and automating the dry process with a robotic arm was launched with the SPARO project. The present research project is in direct continuation. It is organized around 4 main axes, with the optimization and the comprehension of the phenomenon of rebound, the study of the influence of the automation process on the properties of the hardened shotcrete, the improvement of the process's autonomy and, finally, the development of nozzleman assistance. The first part contributes to understanding the interactions between the different nozzle trajectories and rebound, especially with the use of the so-called planetary path. It shows remarkably low values of rebound, close to the one usually obtained with wet-mix shotcrete. It brings the concept of fundamental rebound of the materials and generates less rebound than the "classical" trajectory widely adopted by nozzlemen. The hypothesis supported is that the optimal trajectory is the one that, for a given thickness, covers a surface of maximum size, while ensuring that each portion of this surface is constantly impacted, or excited, so as to exceed a critical energy frequency of the substrate, faciliting the capture of incoming particles. The study of the hardened concrete's properties underlines that the placement technique has an important effect on the compressive strength. A decrease of 7% is observed between the automated method and a traditional sprayer, on the other hand, no changes were observed concerning the porosity. In the contribution to the overall system's automation, the use of computer vision showed very satisfying results. An automatic method for measuring the sprayed thickness and its subsequent corrections has been developed using a LIDAR sensor. In parallel, adapting certain sensors package has made possible the development of a nozzlemen's assistance, giving information on the nozzle’s angle and distance with regards to the sprayed surface.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/113904 |
Date | 13 December 2023 |
Creators | Schaeffer, Julien |
Contributors | Jolin, Marc |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xii, 99 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0022 seconds