Return to search

Localisation et Cartographie Simultanées avec Vision Monoculaire

Cette thèse aborde le problème de localisation et cartographie simultanée pour un robot mobile. Lorsque le robot Évolue dans un environnement inconnu, il doit construire une carte au fur et mesure qu'il explore le monde, tout en se localisant dans celle-ci. De l'anglais \textit{Simultaneous Localisation And Mapping}, le SLAM est une brique essentielle de l'architecture d'un robot autonome. Plusieurs éléments sont nécessaire ‡ la résolution du SLAM, en particulier la perception de l'environnement permet d'observer les éléments de référence (appelés amers) qui constituent la carte. Ces travaux se focalisent sur l'utilisation de la vision artificielle comme moyen de percevoir l'environnement, ainsi la carte et la position du robot peuvent être estimées dans l'espace 3D complet. Les caméras numériques sont des capteurs bien adaptés aux systèmes embarqués et fournissent une information riche sur l'environnement. Mais une caméra ne permet pas de mesurer la distance aux objets, dont on n'obtient donc que des observations partielles. En particulier, ceci rend difficile l'ajout d'un nouvel amer dans la carte. Une méthode d'initialisation pour des amers de type point est proposée, elle s'appuie sur un mécanisme de génération puis de sélection d'hypothèses. Une architecture SLAM pour un robot terrestre est décrite dans son ensemble, en particulier une caméra panoramique est utilisée et permet de percevoir l'environnement sur 360 degrés. Cette architecture a été implémentée sur un robot de type ATRV. Une carte de points 3D est pertinente pour la localisation d'un robot, mais donne une information limitée sur la structure de l'environnement. Un algorithme permettant d'utiliser des segments de droite est proposé, et testé sur des données réelles

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00452478
Date20 December 2006
CreatorsLemaire, Thomas
PublisherEcole nationale superieure de l'aeronautique et de l'espace
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds