Return to search

A visual analytics approach for visualisation and knowledge discovery from time-varying personal life data

Today, the importance of big data from lifestyles and work activities has been the focus of much research. At the same time, advances in modern sensor technologies have enabled self-logging of a signi cant number of daily activities and movements. Lifestyle logging produces a wide variety of personal data along the lifespan of individuals, including locations, movements, travel distance, step counts and the like, and can be useful in many areas such as healthcare, personal life management, memory recall, and socialisation. However, the amount of obtainable personal life logging data has enormously increased and stands in need of effective processing, analysis, and visualisation to provide hidden insights owing to the lack of semantic information (particularly in spatiotemporal data), complexity, large volume of trivial records, and absence of effective information visualisation on a large scale. Meanwhile, new technologies such as visual analytics have emerged with great potential in data mining and visualisation to overcome the challenges in handling such data and to support individuals in many aspects of their life. Thus, this thesis contemplates the importance of scalability and conducts a comprehensive investigation into visual analytics and its impact on the process of knowledge discovery from the European Commission project MyHealthAvatar at the Centre for Visualisation and Data Analytics by actively involving individuals in order to establish a credible reasoning and effectual interactive visualisation of such multivariate data with particular focus on lifestyle and personal events. To this end, this work widely reviews the foremost existing work on data mining (with the particular focus on semantic enrichment and ranking), data visualisation (of time-oriented, personal, and spatiotemporal data), and methodical evaluations of such approaches. Subsequently, a novel automated place annotation is introduced with multilevel probabilistic latent semantic analysis to automatically attach relevant information to the collected personal spatiotemporal data with low or no semantic information in order to address the inadequate information, which is essential for the process of knowledge discovery. Correspondingly, a multi-signi ficance event ranking model is introduced by involving a number of factors as well as individuals' preferences, which can influence the result within the process of analysis towards credible and high-quality knowledge discovery. The data mining models are assessed in terms of accurateness and performance. The results showed that both models are highly capable of enriching the raw data and providing significant events based on user preferences. An interactive visualisation is also designed and implemented including a set of novel visual components signifi cantly based upon human perception and attentiveness to visualise the extracted knowledge. Each visual component is evaluated iteratively based on usability and perceptibility in order to enhance the visualisation towards reaching the goal of this thesis. Lastly, three integrated visual analytics tools (platforms) are designed and implemented in order to demonstrate how the data mining models and interactive visualisation can be exploited to support different aspects of personal life, such as lifestyle, life pattern, and memory recall (reminiscence). The result of the evaluation for the three integrated visual analytics tools showed that this visual analytics approach can deliver a remarkable experience in gaining knowledge and supporting the users' life in certain aspects.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:742526
Date January 2018
CreatorsParvinzamir, Farzad
PublisherUniversity of Bedfordshire
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10547/622697

Page generated in 0.0018 seconds