Return to search

Visualização e exploração de dados multidimensionais na web / Exploratory multidimensional data visualization on the web

Com o crescimento do volume e dos tipos de dados, a necessidade de analisar e entender o que estes representam e como estão relacionados tem se tornado crucial. Técnicas de visualização baseadas em projeções multidimensionais ganharam espaço e interesse como uma das possíveis ferramentas de auxílio para esse problema, proporcionando um forma simples e rápida de identificar padrões, reconhecer tendências e extrair características antes não óbvias no conjunto original. No entanto, a projeção do conjunto de dados em um espaço de menor dimensão pode não ser suficiente, em alguns casos, para responder ou esclarecer certas perguntas feitas pelo usuário, tornando a análise posterior à projeção crucial para a correta interpretação da visualização observada. Logo, a interatividade, aplicada à necessidade do usuário, é uma fator essencial para análise. Neste contexto, este projeto de mestrado tem como principal objetivo criar metáforas visuais baseadas em atributos, através de medidas estatísticas e artefatos para detecção de ruídos e grupos similares, para auxiliar na exploração e análise dos dados projetados. Além disso, propõe-se disponibilizar, em navegadores Web, as técnicas de visualização de dados multidimensionais desenvolvidas pelo Grupo de Processamento Visual e Geométrico do ICMC-USP. O desenvolvimento do projeto como plataforma Web inspira-se na dificuldade de instalação e execução que certos projetos de visualização possuem, como problemas causados por diferentes versões de IDEs, compiladores e sistemas operacionais. Além disso, o fato do projeto estar disponível online para execução tem como propósito facilitar o acesso e a divulgação das técnicas propostas para o público geral. / With the growing number and types of data, the need to analyze and understand what they represent and how they are related has become crucial. Visualization techniques based on multidimensional projections have gained space and interest as one of the possible tools to aid this problem, providing a simple and quick way to identify patterns, recognize trends and extract features previously not obvious in the original set. However, the data set projection in a smaller space may not be sufficient in some cases to answer or clarify certain questions asked by the user, making the posterior projection analysis crucial for the exploration and understanding of the data. Thus, interactivity in the visualization, applied to the users needs, is an essential factor for analysis. In this context, this master projects main objective consists to create visual metaphors based on attributes, through statistical measures and artifacts for detecting noise and similar groups, to assist the exploration and analysis of projected data. In addition, it is proposed to make available, in Web browsers, the multidimensional data visualization techniques developed by the Group of Visual and Geometric Processing at ICMC-USP. The development of the project as a Web platform was inspired by the difficulty of installation and running that certain visualization projects have, mainly due different versions of IDEs, compilers and operating systems. In addition, the fact that the project is available online for execution aims to facilitate the access and dissemination of technical proposals for the general public.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-08042016-103144
Date13 November 2015
CreatorsLucas de Carvalho Pagliosa
ContributorsLuis Gustavo Nonato, Maria Cristina Ferreira de Oliveira, Celmar Guimarães da Silva
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds