The presence of off-flavor compounds in fish represents one of the significant economic problems encountered in aquaculture. These off-flavor compounds are due to the absorption of substances produced by microorganisms. Currently, a number of strategies have been employed to prevent or limit the growth of these microorganisms in recirculating aquaculture system. Therefore, it is important to evaluate the effectiveness of these strategies by monitoring the concentrations of off-flavor compounds in fish. In-vivo solid phase microextraction (SPME), a rapid and simple sample preparation method, allows the monitoring of concentrations of off-flavor compounds in live fish. In this research, geosmin and 2-methylisoborneol (2-MIB), which are produced by cyanobacteria and actinomycetes being the major sources for “earthy” and “muddy” flavors in fish, were selected as representatives. In order to accurately quantify these compounds in fish muscle, two kinetic calibration methods, on-fibre standardization and measurement using pre-determined extraction rate, were used. Results obtained were validated by traditional methods. The detection limit of in-vivo SPME in fish muscle was 0.12 ng/g for geosmin and 0.21 ng/g for 2-MIB, both below the human sensory threshold. Additionally, the binding effect of geosmin and 2-MIB in fish muscle was investigated in details. Facilitated by the agarose gel model, it was proven that binding did not impact the extraction rate under the pre-determined sampling time. Furthermore, an optional sampling position was undertaken by inserting the fibre into the fat tissue found under the fish belly, the results indicating that this method could decrease extraction time by up to two-thirds of its usual time.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/6973 |
Date | January 2012 |
Creators | Bai, Ziwei |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0017 seconds