Return to search

Soluções aproximadas para algoritmos escaláveis de mineração de dados em domínios de dados complexos usando GPGPU / On approximate solutions to scalable data mining algorithms for complex data problems using GPGPU

A crescente disponibilidade de dados em diferentes domínios tem motivado o desenvolvimento de técnicas para descoberta de conhecimento em grandes volumes de dados complexos. Trabalhos recentes mostram que a busca em dados complexos é um campo de pesquisa importante, já que muitas tarefas de mineração de dados, como classificação, detecção de agrupamentos e descoberta de motifs, dependem de algoritmos de busca ao vizinho mais próximo. Para resolver o problema da busca dos vizinhos mais próximos em domínios complexos muitas abordagens determinísticas têm sido propostas com o objetivo de reduzir os efeitos da maldição da alta dimensionalidade. Por outro lado, algoritmos probabilísticos têm sido pouco explorados. Técnicas recentes relaxam a precisão dos resultados a fim de reduzir o custo computacional da busca. Além disso, em problemas de grande escala, uma solução aproximada com uma análise teórica sólida mostra-se mais adequada que uma solução exata com um modelo teórico fraco. Por outro lado, apesar de muitas soluções exatas e aproximadas de busca e mineração terem sido propostas, o modelo de programação em CPU impõe restrições de desempenho para esses tipos de solução. Uma abordagem para melhorar o tempo de execução de técnicas de recuperação e mineração de dados em várias ordens de magnitude é empregar arquiteturas emergentes de programação paralela, como a arquitetura CUDA. Neste contexto, este trabalho apresenta uma proposta para buscas kNN de alto desempenho baseada numa técnica de hashing e implementações paralelas em CUDA. A técnica proposta é baseada no esquema LSH, ou seja, usa-se projeções em subespac¸os. O LSH é uma solução aproximada e tem a vantagem de permitir consultas de custo sublinear para dados em altas dimensões. Usando implementações massivamente paralelas melhora-se tarefas de mineração de dados. Especificamente, foram desenvolvidos soluções de alto desempenho para algoritmos de descoberta de motifs baseados em implementações paralelas de consultas kNN. As implementações massivamente paralelas em CUDA permitem executar estudos experimentais sobre grandes conjuntos de dados reais e sintéticos. A avaliação de desempenho realizada neste trabalho usando GeForce GTX470 GPU resultou em um aumento de desempenho de até 7 vezes, em média sobre o estado da arte em buscas por similaridade e descoberta de motifs / The increasing availability of data in diverse domains has created a necessity to develop techniques and methods to discover knowledge from huge volumes of complex data, motivating many research works in databases, data mining and information retrieval communities. Recent studies have suggested that searching in complex data is an interesting research field because many data mining tasks such as classification, clustering and motif discovery depend on nearest neighbor search algorithms. Thus, many deterministic approaches have been proposed to solve the nearest neighbor search problem in complex domains, aiming to reduce the effects of the well-known curse of dimensionality. On the other hand, probabilistic algorithms have been slightly explored. Recently, new techniques aim to reduce the computational cost relaxing the quality of the query results. Moreover, in large-scale problems, an approximate solution with a solid theoretical analysis seems to be more appropriate than an exact solution with a weak theoretical model. On the other hand, even though several exact and approximate solutions have been proposed, single CPU architectures impose limits on performance to deliver these kinds of solution. An approach to improve the runtime of data mining and information retrieval techniques by an order-of-magnitude is to employ emerging many-core architectures such as CUDA-enabled GPUs. In this work we present a massively parallel kNN query algorithm based on hashing and CUDA implementation. Our method, based on the LSH scheme, is an approximate method which queries high-dimensional datasets with sub-linear computational time. By using the massively parallel implementation we improve data mining tasks, specifically we create solutions for (soft) realtime time series motif discovery. Experimental studies on large real and synthetic datasets were carried out thanks to the highly CUDA parallel implementation. Our performance evaluation on GeForce GTX 470 GPU resulted in average runtime speedups of up to 7x on the state-of-art of similarity search and motif discovery solutions

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22112011-132339
Date22 September 2011
CreatorsAlexander Victor Ocsa Mamani
ContributorsElaine Parros Machado de Sousa, Sandra Aparecida de Amo, Solange Oliveira Rezende
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0123 seconds