La Voix sur IP (VoIP) est devenue un paradigme majeur pour fournir des services de télécommunications flexibles tout en réduisant les coûts opérationnels. Le déploiement à large échelle de la VoIP est soutenu par l'accès haut débit à l'Internet et par la standardisation des protocoles dédiés. Cependant, la VoIP doit également faire face à plusieurs risques comprenant des vulnérabilités héritées de la couche IP auxquelles s'ajoutent des vulnérabilités spécifiques. Notre objectif est de concevoir, implanter et valider de nouveaux modèles et architectures pour assurer une défense préventive, permettre le monitorage et la détection d'intrusion dans les réseaux VoIP. Notre travail combine deux domaines: celui de la sécurité des réseaux et celui de l'intelligence artificielle. Nous renforçons les mécanismes de sécurité existants en apportant des contributions sur trois axes : Une approche basée sur des mécanismes d'apprentissage pour le monitorage de trafic de signalisation VoIP, un pot de miel spécifique, et un modèle de corrélation des événements pour la détection d'intrusion. Pour l'évaluation de nos solutions, nous avons développés des agents VoIP distribués et gérés par une entité centrale. Nous avons développé un outil d'analyse des traces réseaux de la signalisation que nous avons utilisé pour expérimenter avec des traces de monde réel. Enfin, nous avons implanté un prototype de détection d'intrusion basé sur des règles de corrélation des événements. / Voice over IP (VoIP) has become a major paradigm for providing flexible telecommunication services and reducing operational costs. The large-scale deployment of VoIP has been leveraged by the high-speed broadband access to the Internet and the standardization of dedicated protocols. However, VoIP faces multiple security issues including vulnerabilities inherited from the IP layer as well as specific ones. Our objective is to design, implement and validate new models and architectures for performing proactive defense, monitoring and intrusion detection in VoIP networks. Our work combines two domains: network security and artificial intelligence. We reinforce existent security mechanisms by working on three axes: a machine learning approach for VoIP signaling traffic monitoring, a VoIP specific honeypot and a security event correlation model for intrusion detection. In order to experiment our solutions, we have developed VoIP agents which are distributed and managed by a central entity. We have developed an analyzer of signaling network traces and we used it to analyze real-world traces. Finally, we have implemented a prototype of a rule-based event-driven intrusion detection system.
Identifer | oai:union.ndltd.org:theses.fr/2009NAN10021 |
Date | 31 March 2009 |
Creators | Nassar, Mohamed |
Contributors | Nancy 1, Festor, Olivier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds